Suppr超能文献

测量仿生耳的电状态。重新思考人工耳蜗的阻抗。

Measuring the Electrical Status of the Bionic Ear. Re-thinking the Impedance in Cochlear Implants.

作者信息

Di Lella Federico A, Parreño Matias, Fernandez Florencia, Boccio Carlos M, Ausili Sebastián A

机构信息

Department of Otolaryngology, Hospital Italiano, Buenos Aires, Argentina.

Department of Otolaryngology, University of Miami, Miami, FL, United States.

出版信息

Front Bioeng Biotechnol. 2020 Sep 18;8:568690. doi: 10.3389/fbioe.2020.568690. eCollection 2020.

Abstract

As in any biophysical electrode-tissue environment, impedance measurement shows a complex relationship which reflects the electrical characteristics of the medium. In cochlear implants (CIs), which is mostly a stimulation-oriented device, the actual clinical approach only considers one arbitrary time-measure of the impedance. However, to determine the main electrical properties of the cochlear medium, the overall impedance and its subcomponents (i.e., access resistance and polarization impedance) should be described. We here characterized, validated and discussed a novel method to calculate impedance subcomponents based on CI measurement capabilities. With an electronic circuit of the cochlear electrode-tissue interface and its computational simulation, the access resistance and polarization impedance were modeled. Values of each electrical component were estimated through a custom-made pulse delivery routine and the acquisition of multiple data points. Using CI hardware, results fell within the electronic components nominal errors (± 10%). Considering the method's accuracy and reliability, it is readily available to be applied in research-clinical use. In the man-machine nature of the CI, this represents the basis to optimize the communication between a CI electrode and the spiral ganglion cells.

摘要

与任何生物物理电极 - 组织环境一样,阻抗测量显示出一种复杂的关系,这种关系反映了介质的电学特性。在主要以刺激为导向的人工耳蜗(CI)中,实际临床方法仅考虑阻抗的一个任意时间测量值。然而,为了确定耳蜗介质的主要电学特性,应描述总阻抗及其子分量(即接入电阻和极化阻抗)。我们在此表征、验证并讨论了一种基于人工耳蜗测量能力计算阻抗子分量的新方法。通过耳蜗电极 - 组织界面的电子电路及其计算模拟,对接入电阻和极化阻抗进行了建模。通过定制的脉冲传输程序和多个数据点的采集来估计每个电气组件的值。使用人工耳蜗硬件,结果落在电子组件的标称误差范围内(±10%)。考虑到该方法的准确性和可靠性,它很容易应用于研究 - 临床用途。在人工耳蜗的人机特性中,这代表了优化人工耳蜗电极与螺旋神经节细胞之间通信的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1623/7530401/c1c41f952b08/fbioe-08-568690-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验