von Atzigen Marco, Liebmann Florentin, Hoch Armando, Bauer David E, Snedeker Jess Gerrit, Farshad Mazda, Fürnstahl Philipp
Research in Orthopedic Computer Science, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
Laboratory for Orthopaedic Biomechanics, ETH Zurich, Zurich, Switzerland.
Int J Med Robot. 2021 Feb;17(1):1-10. doi: 10.1002/rcs.2184. Epub 2020 Nov 6.
Existing surgical navigation approaches of the rod bending procedure in spinal fusion rely on optical tracking systems that determine the location of placed pedicle screws using a hand-held marker.
We propose a novel, marker-less surgical navigation proof-of-concept to bending rod implants. Our method combines augmented reality with on-device machine learning to generate and display a virtual template of the optimal rod shape without touching the instrumented anatomy. Performance was evaluated on lumbosacral spine phantoms against a pointer-based navigation benchmark approach and ground truth data obtained from computed tomography.
Our method achieved a mean error of 1.83 ± 1.10 mm compared to 1.87 ± 1.31 mm measured in the marker-based approach, while only requiring 21.33 ± 8.80 s as opposed to 36.65 ± 7.49 s attained by the pointer-based method.
Our results suggests that the combination of augmented reality and machine learning has the potential to replace conventional pointer-based navigation in the future.
脊柱融合术中现有的棒材弯曲手术导航方法依赖于光学跟踪系统,该系统使用手持标记来确定放置的椎弓根螺钉的位置。
我们提出了一种用于弯曲棒状植入物的新型无标记手术导航概念验证方法。我们的方法将增强现实与设备上的机器学习相结合,以生成并显示最佳棒材形状的虚拟模板,而无需接触已植入器械的解剖结构。在腰骶椎模型上,针对基于指针的导航基准方法以及从计算机断层扫描获得的地面真值数据对性能进行了评估。
我们的方法平均误差为1.83±1.10毫米,而基于标记的方法测量值为1.87±1.31毫米,同时我们的方法仅需21.33±8.80秒,而基于指针的方法则需36.65±7.49秒。
我们的结果表明,增强现实与机器学习的结合未来有可能取代传统的基于指针的导航方法。