Suppr超能文献

利用 CRISPR/Cas9 精确切除 SlHyPRP1 结构域以获得耐盐番茄。

CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.

机构信息

Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.

Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bac Lieu, 97000, Vietnam.

出版信息

Plant Cell Rep. 2021 Jun;40(6):999-1011. doi: 10.1007/s00299-020-02622-z. Epub 2020 Oct 19.

Abstract

CRISPR/Cas9-based multiplexed editing of SlHyPRP1 resulted in precise deletions of its functional motif(s), thereby resulting in salt stress-tolerant events in cultivated tomato. Crop genetic improvement to address environmental stresses for sustainable food production has been in high demand, especially given the current situation of global climate changes and reduction of the global food production rate/population rate. Recently, the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based targeted mutagenesis has provided a revolutionary approach to crop improvement. The major application of CRISPR/Cas in plant genome editing has been the generation of indel mutations via error-prone nonhomologous end joining (NHEJ) repair of DNA DSBs. In this study, we examined the power of the CRISPR/Cas9-based novel approach in the precise manipulation of protein domains of tomato hybrid proline-rich protein 1 (HyPRP1), which is a negative regulator of salt stress responses. We revealed that the precise elimination of SlHyPRP1 negative-response domain(s) led to high salinity tolerance at the germination and vegetative stages in our experimental conditions. CRISPR/Cas9-based domain editing may be an efficient tool to engineer multidomain proteins of important food crops to cope with global climate changes for sustainable agriculture and future food security.

摘要

基于 CRISPR/Cas9 的 SlHyPRP1 多重编辑导致其功能基序的精确缺失,从而在栽培番茄中产生耐盐胁迫的事件。为了实现可持续粮食生产而应对环境压力的作物遗传改良一直是人们的强烈需求,尤其是考虑到当前全球气候变化和全球粮食生产速率/人口比率下降的情况。最近,新兴的成簇规律间隔短回文重复(CRISPR)/CRISPR 相关蛋白(Cas)靶向诱变技术为作物改良提供了一种革命性的方法。CRISPR/Cas 在植物基因组编辑中的主要应用是通过易错的非同源末端连接(NHEJ)修复 DNA DSB 产生插入缺失突变。在这项研究中,我们研究了基于 CRISPR/Cas9 的新型方法在番茄杂种脯氨酸丰富蛋白 1(HyPRP1)蛋白结构域精确操作中的作用,该蛋白是盐胁迫反应的负调控因子。我们发现,在我们的实验条件下,SlHyPRP1 负响应结构域的精确消除导致了发芽和营养生长阶段的高耐盐性。基于 CRISPR/Cas9 的结构域编辑可能是一种有效的工具,可以对重要粮食作物的多结构域蛋白进行工程改造,以应对全球气候变化,实现可持续农业和未来粮食安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验