Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.
State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Environ Sci Technol. 2020 Nov 3;54(21):13409-13418. doi: 10.1021/acs.est.0c02958. Epub 2020 Oct 19.
The impact of chlorine (Cl) chemistry on the formation of secondary organic aerosol (SOA) during a severe wintertime air pollution episode is investigated in this study. The Community Multiscale Air Quality (CMAQ) model v5.0.1 with a modified SAPRC-11 gas-phase mechanism and heterogeneous reactions for reactive chlorine species is updated to include the formation of chlorine radical (Cl)-initiated SOA (Cl-SOA) from aromatic compounds, terpenes, and isoprene. Reported SOA yield data on Cl-SOA formation from environmental chamber studies are used to derive the mass yield and volatility data for the two-product equilibrium-partitioning model. The heterogeneous reaction of particulate chloride (pCl) leads to a significant increase in the Cl and hydroxyl radical (OH) concentrations throughout the domain. Monthly Cl-SOA concentrations range from 0.7 to 3.0 μg m, with increasing anthropogenic Cl emissions leading to higher Cl-SOA concentrations. Indirectly, this also leads to an increase of monthly SOA by up to 2.5-3.0 g μm from the traditional OH oxidation pathways as well as the surface uptake of glyoxal and methylglyoxal. Increased OH concentrations, however, do not always lead to higher overall SOA concentrations in the entire domain. High OH reduces the lifetime of glyoxal/methylglyoxal (GLY/MGLY), making them less available to form SOA. In the Sichuan Basin (SCB) and part of Southwest China where high O concentrations meet high pCl emissions, a higher Cl/OH ratio leads to net O loss from the Cl + O reaction, thus reducing SOA formation from the O oxidation of volatile organic compounds (VOCs). Also, the competition between Cl and OH for VOCs could lead to lower overall SOA because the molar yields of the semivolatile products in Cl-VOC reactions are lower than their OH + VOC reaction counterparts. When Cl concentrations are further increased with higher emissions of Cl, precursor gases can be depleted and become the limiting factor in SOA formation. This study reveals the direct and indirect impacts of chlorine chemistry on SOA in polluted winter conditions, which are greatly affected by the Cl emissions, the ambient O level, and the availability of SOA precursors.
本研究考察了氯(Cl)化学在一次严重冬季空气污染事件中对二次有机气溶胶(SOA)形成的影响。使用带有改良 SAPRC-11 气相机制和反应性氯物种多相反应的社区多尺度空气质量(CMAQ)模型 v5.0.1 进行更新,以包括芳香族化合物、萜烯和异戊二烯形成的氯自由基(Cl)引发的 SOA(Cl-SOA)。从环境室研究中报告的 Cl-SOA 形成的 SOA 产率数据用于推导出两产物平衡分配模型的质量产率和挥发性数据。颗粒态氯(pCl)的多相反应导致整个区域内 Cl 和羟基自由基(OH)浓度显著增加。每月 Cl-SOA 浓度范围为 0.7 至 3.0μg m,随着人为 Cl 排放的增加,Cl-SOA 浓度也随之增加。间接地,这也导致通过传统的 OH 氧化途径以及乙二醛和甲基乙二醛的表面吸收,每月 SOA 增加了 2.5-3.0gμm。然而,OH 浓度的增加并不总是导致整个区域内 SOA 浓度的总体增加。高 OH 会缩短乙二醛/甲基乙二醛(GLY/MGLY)的寿命,使它们不太容易形成 SOA。在四川盆地(SCB)和中国西南部的部分地区,高 O 浓度与高 pCl 排放相遇,高 Cl/OH 比导致 Cl + O 反应中的 O 净损失,从而降低了挥发性有机化合物(VOC)的 O 氧化形成的 SOA。此外,Cl 和 OH 对 VOC 的竞争也可能导致 SOA 浓度降低,因为 Cl-VOC 反应中半挥发性产物的摩尔产率低于其 OH + VOC 反应对应物。随着 Cl 排放的增加,Cl 浓度进一步增加,前体气体可能会被耗尽,成为 SOA 形成的限制因素。本研究揭示了氯化学对污染冬季条件下 SOA 的直接和间接影响,这些影响受 Cl 排放、环境 O 水平和 SOA 前体的可用性的极大影响。