IEEE Trans Vis Comput Graph. 2021 Feb;27(2):464-474. doi: 10.1109/TVCG.2020.3030423. Epub 2021 Jan 28.
We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.
我们提出了 MobileVisFixer,这是一种使可视化更适合移动设备的新方法。尽管移动设备已成为访问网络信息的主要手段,但许多现有的可视化设计并不针对小屏幕进行优化,可能会导致用户体验不佳。目前,从业者和研究人员必须进行繁琐且耗时的工作,以确保其设计能够适应不同大小的屏幕,而现有的工具包和库在诊断和修复问题方面提供的支持很少。为了解决这个挑战,MobileVisFixer 采用了一种新颖的强化学习框架,实现了一种自动化的适合移动设备的可视化重新设计流程。为了指导 MobileVisFixer 的设计,我们首先收集并分析了网络上基于 SVG 的可视化数据,并确定了五个常见的适合移动设备的问题。MobileVisFixer 通过一个马尔可夫决策过程模型解决了具有线性或离散比例的单视图笛卡尔可视化中的四个问题,该模型具有跨各种可视化的通用性和完全可解释性。MobileVisFixer 将图表分解为声明式格式,并使用基于策略梯度方法的贪婪启发式算法,在合理的时间内找到这个困难的多准则优化问题的解决方案。此外,MobileVisFixer 可以通过合并数据可视化的优化算法来轻松扩展。对两个真实数据集的定量评估证明了我们方法的有效性和通用性。
IEEE Trans Vis Comput Graph. 2021-2
IEEE Trans Vis Comput Graph. 2024-5-23
IEEE Trans Vis Comput Graph. 2023-1
J Med Internet Res. 2014-11-13
IEEE Trans Vis Comput Graph. 2024-9
IEEE Trans Vis Comput Graph. 2024-7
IEEE Trans Vis Comput Graph. 2024-9
IEEE Trans Vis Comput Graph. 2025-4
IEEE Trans Vis Comput Graph. 2021-2
Comput Vis Media (Beijing). 2023
IEEE Trans Vis Comput Graph. 2023-1
IEEE Trans Vis Comput Graph. 2023-1