IEEE Trans Vis Comput Graph. 2023 Jan;29(1):570-580. doi: 10.1109/TVCG.2022.3209407. Epub 2022 Dec 21.
Interpretation of genomics data is critically reliant on the application of a wide range of visualization tools. A large number of visualization techniques for genomics data and different analysis tasks pose a significant challenge for analysts: which visualization technique is most likely to help them generate insights into their data? Since genomics analysts typically have limited training in data visualization, their choices are often based on trial and error or guided by technical details, such as data formats that a specific tool can load. This approach prevents them from making effective visualization choices for the many combinations of data types and analysis questions they encounter in their work. Visualization recommendation systems assist non-experts in creating data visualization by recommending appropriate visualizations based on the data and task characteristics. However, existing visualization recommendation systems are not designed to handle domain-specific problems. To address these challenges, we designed GenoREC, a novel visualization recommendation system for genomics. GenoREC enables genomics analysts to select effective visualizations based on a description of their data and analysis tasks. Here, we present the recommendation model that uses a knowledge-based method for choosing appropriate visualizations and a web application that enables analysts to input their requirements, explore recommended visualizations, and export them for their usage. Furthermore, we present the results of two user studies demonstrating that GenoREC recommends visualizations that are both accepted by domain experts and suited to address the given genomics analysis problem. All supplemental materials are available at https://osf.io/y73pt/.
基因组学数据的解释严重依赖于广泛应用各种可视化工具。大量的基因组学数据可视化技术和不同的分析任务对分析师来说是一个重大挑战:哪种可视化技术最有可能帮助他们深入了解数据?由于基因组学分析师通常在数据可视化方面的培训有限,他们的选择通常基于反复试验或受技术细节的指导,例如特定工具可以加载的特定数据格式。这种方法使他们无法为工作中遇到的许多数据类型和分析问题的组合做出有效的可视化选择。可视化推荐系统通过根据数据和任务特征推荐适当的可视化来帮助非专家创建数据可视化。然而,现有的可视化推荐系统并不是为处理特定领域的问题而设计的。为了解决这些挑战,我们设计了 GenoREC,这是一种针对基因组学的新型可视化推荐系统。GenoREC 使基因组学分析师能够根据其数据和分析任务的描述选择有效的可视化。在这里,我们介绍了使用基于知识的方法选择适当可视化的推荐模型和一个 web 应用程序,该应用程序使分析师能够输入他们的要求,探索推荐的可视化,并将其导出以供使用。此外,我们还介绍了两项用户研究的结果,这些结果表明 GenoREC 推荐的可视化不仅被领域专家所接受,而且适合解决给定的基因组学分析问题。所有补充材料均可在 https://osf.io/y73pt/ 上获取。
IEEE Trans Vis Comput Graph. 2023-1
IEEE Trans Vis Comput Graph. 2022-1
IEEE Trans Vis Comput Graph. 2025-1
IEEE Trans Vis Comput Graph. 2023-1
BMC Genomics. 2013-6-13
Nucleic Acids Res. 2020-7-2
BMC Bioinformatics. 2015-5-19
IEEE Trans Vis Comput Graph. 2022-12
IEEE Trans Vis Comput Graph. 2025-1
IEEE Trans Vis Comput Graph. 2025-1
IEEE Trans Vis Comput Graph. 2025-1
Gigascience. 2024-1-2
Front Bioinform. 2023-3-29
Bioinformatics. 2023-1-1
IEEE Trans Vis Comput Graph. 2023-1
Bioinformatics. 2023-1-1
IEEE Trans Vis Comput Graph. 2023-1
IEEE Trans Vis Comput Graph. 2022-1
IEEE Trans Vis Comput Graph. 2022-1
IEEE Trans Vis Comput Graph. 2022-1
IEEE Trans Vis Comput Graph. 2022-12
IEEE Trans Vis Comput Graph. 2021-2
IEEE Trans Vis Comput Graph. 2021-2
Comput Graph Forum. 2019-6