Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock 72205, AR, USA.
Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock 72205, AR, USA.
Int J Psychophysiol. 2020 Dec;158:86-95. doi: 10.1016/j.ijpsycho.2020.09.015. Epub 2020 Oct 16.
Numerous methods exist for the pre-processing and analysis of skin-conductance response (SCR) data, but there is incomplete consensus on suitability and implementation, particularly with regard to signal filtering in conventional peak score (PS) analysis. This is particularly relevant when SCRs are measured during fMRI, which introduces additional noise and signal variability. Using SCR-fMRI data (n = 65 women) from a fear conditioning experiment, we compare the impact of three nested data processing methods on analysis using conventional PS as well as psychophysiological modeling. To evaluate the different methods, we quantify effect size to recover a benchmark contrast of interest, namely, discriminating SCR magnitude to a conditioned stimulus (CS+) relative to a CS not followed by reinforcement (CS-). Findings suggest that low-pass filtering reduces PS sensitivity (Δd = -20%), while band-pass filtering improves PS sensitivity (Δd = +27%). We also replicate previous findings that a psychophysiological modeling approach yields superior sensitivity to detect contrasts of interest than even the most sensitive PS method (Δd = +110%). Furthermore, we present preliminary evidence that filtering differences may account for a portion of exclusions made on commonly applied metrics, such as below zero discrimination. Despite some limitations of our sample and experimental design, it appears that SCR processing pipelines that include band-pass filtering, ideally with model-based SCR quantification, may increase the validity of SCR response measures, maximize research productivity, and decrease sampling bias by reducing data exclusion.
有许多方法可用于皮肤电反应 (SCR) 数据的预处理和分析,但在适用性和实施方面尚未达成完全共识,特别是在传统峰值评分 (PS) 分析中的信号滤波方面。当 SCR 在 fMRI 中测量时,这一点尤其相关,因为 fMRI 会引入额外的噪声和信号变异性。我们使用恐惧条件反射实验的 SCR-fMRI 数据(n=65 名女性),比较了三种嵌套数据处理方法对传统 PS 分析以及心理生理建模的影响。为了评估不同的方法,我们量化了恢复基准对比的效应量,即区分与条件刺激 (CS+) 相关的 SCR 幅度与未强化的 CS-(CS-)的幅度。研究结果表明,低通滤波会降低 PS 的敏感性(Δd=-20%),而带通滤波会提高 PS 的敏感性(Δd=+27%)。我们还复制了先前的发现,即心理生理建模方法比最敏感的 PS 方法(Δd=+110%)更能灵敏地检测到感兴趣的对比。此外,我们初步的证据表明,滤波差异可能是常见应用指标(如低于零的辨别力)排除的部分原因。尽管我们的样本和实验设计存在一些限制,但似乎包含带通滤波的 SCR 处理管道,理想情况下还包括基于模型的 SCR 量化,可能会提高 SCR 反应测量的有效性,最大限度地提高研究效率,并通过减少数据排除来减少采样偏差。