Suppr超能文献

固有不确定性下软 Dice 优化分割图体素偏差的理论分析与实验验证。

Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty.

机构信息

Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10/2440, Leuven 3001, Belgium; Medical Imaging Research Center, UZ Leuven, Herestraat 49/7003, Leuven 3000, Belgium.

Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10/2440, Leuven 3001, Belgium; icometrix, Kolonel Begaultlaan 1b/12, Leuven 3000, Belgium.

出版信息

Med Image Anal. 2021 Jan;67:101833. doi: 10.1016/j.media.2020.101833. Epub 2020 Oct 7.

Abstract

The clinical interest is often to measure the volume of a structure, which is typically derived from a segmentation. In order to evaluate and compare segmentation methods, the similarity between a segmentation and a predefined ground truth is measured using popular discrete metrics, such as the Dice score. Recent segmentation methods use a differentiable surrogate metric, such as soft Dice, as part of the loss function during the learning phase. In this work, we first briefly describe how to derive volume estimates from a segmentation that is, potentially, inherently uncertain or ambiguous. This is followed by a theoretical analysis and an experimental validation linking the inherent uncertainty to common loss functions for training CNNs, namely cross-entropy and soft Dice. We find that, even though soft Dice optimization leads to an improved performance with respect to the Dice score and other measures, it may introduce a volume bias for tasks with high inherent uncertainty. These findings indicate some of the method's clinical limitations and suggest doing a closer ad-hoc volume analysis with an optional re-calibration step.

摘要

临床研究通常需要测量结构的体积,这通常可以通过分割来实现。为了评估和比较分割方法,通常使用流行的离散度量标准(如 Dice 评分)来衡量分割与预定义的真实分割之间的相似性。最近的分割方法在学习阶段使用可微的替代度量标准(如软 Dice)作为损失函数的一部分。在这项工作中,我们首先简要描述了如何从分割中推导出体积估计值,即分割可能具有固有的不确定性或歧义。然后,我们进行了理论分析和实验验证,将固有不确定性与用于训练 CNN 的常见损失函数(即交叉熵和软 Dice)联系起来。我们发现,尽管软 Dice 优化相对于 Dice 评分和其他度量标准可以提高性能,但对于固有不确定性较高的任务,它可能会引入体积偏差。这些发现表明了该方法的一些临床局限性,并建议进行更密切的特定于任务的体积分析,并可能需要进行重新校准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验