Suppr超能文献

深度学习医学图像分割的置信度校准和预测不确定性估计。

Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation.

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):3868-3878. doi: 10.1109/TMI.2020.3006437. Epub 2020 Nov 30.

Abstract

Fully convolutional neural networks (FCNs), and in particular U-Nets, have achieved state-of-the-art results in semantic segmentation for numerous medical imaging applications. Moreover, batch normalization and Dice loss have been used successfully to stabilize and accelerate training. However, these networks are poorly calibrated i.e. they tend to produce overconfident predictions for both correct and erroneous classifications, making them unreliable and hard to interpret. In this paper, we study predictive uncertainty estimation in FCNs for medical image segmentation. We make the following contributions: 1) We systematically compare cross-entropy loss with Dice loss in terms of segmentation quality and uncertainty estimation of FCNs; 2) We propose model ensembling for confidence calibration of the FCNs trained with batch normalization and Dice loss; 3) We assess the ability of calibrated FCNs to predict segmentation quality of structures and detect out-of-distribution test examples. We conduct extensive experiments across three medical image segmentation applications of the brain, the heart, and the prostate to evaluate our contributions. The results of this study offer considerable insight into the predictive uncertainty estimation and out-of-distribution detection in medical image segmentation and provide practical recipes for confidence calibration. Moreover, we consistently demonstrate that model ensembling improves confidence calibration.

摘要

全卷积神经网络(FCNs),特别是 U-Nets,在许多医学图像应用的语义分割中取得了最先进的结果。此外,批量归一化和 Dice 损失已成功用于稳定和加速训练。然而,这些网络的校准效果很差,即它们往往对正确和错误分类都会产生过度自信的预测,从而导致它们不可靠且难以解释。在本文中,我们研究了用于医学图像分割的 FCN 中的预测不确定性估计。我们做出了以下贡献:1)我们系统地比较了交叉熵损失和 Dice 损失在 FCN 的分割质量和不确定性估计方面的表现;2)我们提出了模型集成,用于对使用批量归一化和 Dice 损失训练的 FCN 进行置信度校准;3)我们评估了校准后的 FCN 预测结构分割质量和检测离群测试示例的能力。我们在脑、心和前列腺三个医学图像分割应用中进行了广泛的实验,以评估我们的贡献。这项研究的结果为医学图像分割中的预测不确定性估计和离群检测提供了重要的见解,并为置信度校准提供了实用的方法。此外,我们始终证明模型集成可以提高置信度校准的效果。

相似文献

2
Can uncertainty estimation predict segmentation performance in ultrasound bone imaging?在超声骨成像中,不确定性估计能否预测分割性能?
Int J Comput Assist Radiol Surg. 2022 May;17(5):825-832. doi: 10.1007/s11548-022-02597-0. Epub 2022 Apr 4.
3
Calibrating segmentation networks with margin-based label smoothing.基于边界的标签平滑方法校准分割网络。
Med Image Anal. 2023 Jul;87:102826. doi: 10.1016/j.media.2023.102826. Epub 2023 Apr 24.

引用本文的文献

5
Uncertainty-guided pancreatic tumor auto-segmentation with Tversky ensemble.基于Tversky集成的不确定性引导胰腺肿瘤自动分割
Phys Imaging Radiat Oncol. 2025 Mar 8;34:100740. doi: 10.1016/j.phro.2025.100740. eCollection 2025 Apr.

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
8
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
9
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验