Vojta Thomas, Halladay Samuel, Skinner Sarah, Janušonis Skirmantas, Guggenberger Tobias, Metzler Ralf
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA.
Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, USA.
Phys Rev E. 2020 Sep;102(3-1):032108. doi: 10.1103/PhysRevE.102.032108.
Fractional Brownian motion (FBM), a non-Markovian self-similar Gaussian stochastic process with long-ranged correlations, represents a widely applied, paradigmatic mathematical model of anomalous diffusion. We report the results of large-scale computer simulations of FBM in one, two, and three dimensions in the presence of reflecting boundaries that confine the motion to finite regions in space. Generalizing earlier results for finite and semi-infinite one-dimensional intervals, we observe that the interplay between the long-time correlations of FBM and the reflecting boundaries leads to striking deviations of the stationary probability density from the uniform density found for normal diffusion. Particles accumulate at the boundaries for superdiffusive FBM while their density is depleted at the boundaries for subdiffusion. Specifically, the probability density P develops a power-law singularity, P∼r^{κ}, as a function of the distance r from the wall. We determine the exponent κ as a function of the dimensionality, the confining geometry, and the anomalous diffusion exponent α of the FBM. We also discuss implications of our results, including an application to modeling serotonergic fiber density patterns in vertebrate brains.
分数布朗运动(FBM)是一种具有长程相关性的非马尔可夫自相似高斯随机过程,它代表了一种广泛应用的反常扩散的典型数学模型。我们报告了在存在反射边界的情况下,对一维、二维和三维FBM进行大规模计算机模拟的结果,这些反射边界将运动限制在空间中的有限区域。推广早期关于有限和半无限一维区间的结果,我们观察到FBM的长时间相关性与反射边界之间的相互作用导致平稳概率密度与正常扩散中发现的均匀密度有显著偏差。对于超扩散FBM,粒子在边界处积累,而对于亚扩散,它们在边界处的密度降低。具体来说,概率密度P作为到壁的距离r的函数,呈现幂律奇点,P∼r^κ。我们确定指数κ作为维度、限制几何形状和FBM的反常扩散指数α的函数。我们还讨论了我们结果的含义,包括在模拟脊椎动物大脑中血清素能纤维密度模式方面的应用。