Suppr超能文献

脑血清素能纤维提示人工神经网络中基于异常扩散的信号丢失。

Brain serotonergic fibers suggest anomalous diffusion-based dropout in artificial neural networks.

作者信息

Lee Christian, Zhang Zheng, Janušonis Skirmantas

机构信息

Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States.

Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States.

出版信息

Front Neurosci. 2022 Oct 4;16:949934. doi: 10.3389/fnins.2022.949934. eCollection 2022.

Abstract

Random dropout has become a standard regularization technique in artificial neural networks (ANNs), but it is currently unknown whether an analogous mechanism exists in biological neural networks (BioNNs). If it does, its structure is likely to be optimized by hundreds of millions of years of evolution, which may suggest novel dropout strategies in large-scale ANNs. We propose that the brain serotonergic fibers (axons) meet some of the expected criteria because of their ubiquitous presence, stochastic structure, and ability to grow throughout the individual's lifespan. Since the trajectories of serotonergic fibers can be modeled as paths of anomalous diffusion processes, in this proof-of-concept study we investigated a dropout algorithm based on the superdiffusive fractional Brownian motion (FBM). The results demonstrate that serotonergic fibers can potentially implement a dropout-like mechanism in brain tissue, supporting neuroplasticity. They also suggest that mathematical theories of the structure and dynamics of serotonergic fibers can contribute to the design of dropout algorithms in ANNs.

摘要

随机失活已成为人工神经网络(ANN)中的一种标准正则化技术,但目前尚不清楚生物神经网络(BioNN)中是否存在类似机制。如果存在,其结构可能已经通过数亿年的进化得到了优化,这可能为大规模人工神经网络提供新的失活策略。我们认为,大脑中的血清素能纤维(轴突)符合一些预期标准,因为它们广泛存在、结构随机,并且在个体的整个生命周期中都具有生长能力。由于血清素能纤维的轨迹可以被建模为反常扩散过程的路径,在这项概念验证研究中,我们研究了一种基于超扩散分数布朗运动(FBM)的失活算法。结果表明,血清素能纤维可能在脑组织中实现类似失活的机制,支持神经可塑性。它们还表明,血清素能纤维的结构和动力学数学理论可以为人工神经网络中失活算法的设计做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d6/9577023/3a25f48dbab9/fnins-16-949934-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验