Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
Nat Biomed Eng. 2021 Apr;5(4):309-323. doi: 10.1038/s41551-020-00614-8. Epub 2020 Oct 19.
The understanding and treatment of psychiatric disorders, which are known to be neurobiologically and clinically heterogeneous, could benefit from the data-driven identification of disease subtypes. Here, we report the identification of two clinically relevant subtypes of post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) on the basis of robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the default mode network. We identified the disease subtypes by analysing, via unsupervised and supervised machine learning, the power-envelope-based connectivity of signals reconstructed from high-density resting-state electroencephalography in four datasets of patients with PTSD and MDD, and show that the subtypes are transferable across independent datasets recorded under different conditions. The subtype whose functional connectivity differed most from those of healthy controls was less responsive to psychotherapy treatment for PTSD and failed to respond to an antidepressant medication for MDD. By contrast, both subtypes responded equally well to two different forms of repetitive transcranial magnetic stimulation therapy for MDD. Our data-driven approach may constitute a generalizable solution for connectome-based diagnosis.
已知精神障碍在神经生物学和临床上存在异质性,对其进行理解和治疗可能会受益于基于数据的疾病亚型识别。在这里,我们根据稳健且独特的功能连接模式(主要在前顶叶控制网络和默认模式网络内),报告了创伤后应激障碍(PTSD)和重度抑郁症(MDD)两种具有临床相关性的亚型的识别。我们通过对来自 PTSD 和 MDD 患者四个数据集的高分辨率静息态脑电图信号的基于功率包络的连接进行无监督和有监督的机器学习分析,识别出了疾病亚型,并表明这些亚型可以在不同条件下记录的独立数据集之间转移。与健康对照组的功能连接差异最大的亚型对 PTSD 的心理治疗反应较差,且对 MDD 的抗抑郁药物治疗无反应。相比之下,两种亚型对 MDD 的两种不同形式的重复经颅磁刺激治疗反应均良好。我们的基于数据驱动的方法可能为基于连接组的诊断提供一种可推广的解决方案。