Suppr超能文献

一种脑电图特征可预测重度抑郁症的抗抑郁反应。

An electroencephalographic signature predicts antidepressant response in major depression.

机构信息

School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.

Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.

出版信息

Nat Biotechnol. 2020 Apr;38(4):439-447. doi: 10.1038/s41587-019-0397-3. Epub 2020 Feb 10.

Abstract

Antidepressants are widely prescribed, but their efficacy relative to placebo is modest, in part because the clinical diagnosis of major depression encompasses biologically heterogeneous conditions. Here, we sought to identify a neurobiological signature of response to antidepressant treatment as compared to placebo. We designed a latent-space machine-learning algorithm tailored for resting-state electroencephalography (EEG) and applied it to data from the largest imaging-coupled, placebo-controlled antidepressant study (n = 309). Symptom improvement was robustly predicted in a manner both specific for the antidepressant sertraline (versus placebo) and generalizable across different study sites and EEG equipment. This sertraline-predictive EEG signature generalized to two depression samples, wherein it reflected general antidepressant medication responsivity and related differentially to a repetitive transcranial magnetic stimulation treatment outcome. Furthermore, we found that the sertraline resting-state EEG signature indexed prefrontal neural responsivity, as measured by concurrent transcranial magnetic stimulation and EEG. Our findings advance the neurobiological understanding of antidepressant treatment through an EEG-tailored computational model and provide a clinical avenue for personalized treatment of depression.

摘要

抗抑郁药被广泛应用,但它们的疗效相对于安慰剂来说并不显著,部分原因是重度抑郁症的临床诊断涵盖了生物学上具有异质性的病症。在这里,我们试图确定一个对抗抑郁治疗反应的神经生物学特征,以与安慰剂进行比较。我们设计了一种针对静息态脑电图(EEG)的潜在空间机器学习算法,并将其应用于最大的成像耦合、安慰剂对照抗抑郁研究的数据中(n=309)。以一种既能特异预测抗抑郁药舍曲林(相对于安慰剂),又能跨不同研究地点和 EEG 设备普遍预测的方式,实现了症状的显著改善。这种舍曲林预测的 EEG 特征适用于两个抑郁症样本,反映了一般的抗抑郁药物反应,并与重复经颅磁刺激治疗结果存在差异。此外,我们发现,舍曲林静息态 EEG 特征反映了前额叶神经反应性,通过同时进行经颅磁刺激和 EEG 来测量。我们的研究结果通过 EEG 定制的计算模型推进了对抗抑郁治疗的神经生物学理解,并为抑郁症的个性化治疗提供了一种临床途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea34/7145761/ee10afb7f8b0/nihms-1546941-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验