Suppr超能文献

最大化网络的聚类系数及其对生境网络鲁棒性的影响。

Maximising the clustering coefficient of networks and the effects on habitat network robustness.

机构信息

Department of Quantitative Landscape Ecology, iES Landau, University of Koblenz-Landau, Landau i.d. Pfalz, Germany.

Department of Mathematics, University of Kaiserslautern, Kaiserslautern, Germany.

出版信息

PLoS One. 2020 Oct 20;15(10):e0240940. doi: 10.1371/journal.pone.0240940. eCollection 2020.

Abstract

The robustness of networks against node failure and the response of networks to node removal has been studied extensively for networks such as transportation networks, power grids, and food webs. In many cases, a network's clustering coefficient was identified as a good indicator for network robustness. In ecology, habitat networks constitute a powerful tool to represent metapopulations or -communities, where nodes represent habitat patches and links indicate how these are connected. Current climate and land-use changes result in decline of habitat area and its connectivity and are thus the main drivers for the ongoing biodiversity loss. Conservation efforts are therefore needed to improve the connectivity and mitigate effects of habitat loss. Habitat loss can easily be modelled with the help of habitat networks and the question arises how to modify networks to obtain higher robustness. Here, we develop tools to identify which links should be added to a network to increase the robustness. We introduce two different heuristics, Greedy and Lazy Greedy, to maximize the clustering coefficient if multiple links can be added. We test these approaches and compare the results to the optimal solution for different generic networks including a variety of standard networks as well as spatially explicit landscape based habitat networks. In a last step, we simulate the robustness of habitat networks before and after adding multiple links and investigate the increase in robustness depending on both the number of added links and the heuristic used. We found that using our heuristics to add links to sparse networks such as habitat networks has a greater impact on the clustering coefficient compared to randomly adding links. The Greedy algorithm delivered optimal results in almost all cases when adding two links to the network. Furthermore, the robustness of networks increased with the number of additional links added using the Greedy or Lazy Greedy algorithm.

摘要

网络对节点故障的鲁棒性以及网络对节点移除的响应已经在交通网络、电网和食物网等网络中得到了广泛的研究。在许多情况下,网络的聚类系数被认为是网络鲁棒性的一个很好的指标。在生态学中,栖息地网络构成了表示复合种群或群落的有力工具,其中节点代表栖息地斑块,链接表示这些栖息地斑块是如何连接的。当前的气候和土地利用变化导致栖息地面积及其连通性下降,因此是生物多样性持续丧失的主要驱动因素。因此,需要保护努力来提高连通性并减轻栖息地丧失的影响。栖息地丧失可以很容易地通过栖息地网络进行建模,问题是如何修改网络以获得更高的鲁棒性。在这里,我们开发了一些工具来识别应该向网络中添加哪些链接以提高鲁棒性。我们引入了两种不同的启发式方法,即贪婪算法和懒惰贪婪算法,如果可以添加多个链接,则可以最大化聚类系数。我们测试了这些方法,并将结果与不同通用网络(包括各种标准网络以及基于空间显式的栖息地网络)的最优解决方案进行了比较。在最后一步,我们模拟了添加多个链接前后栖息地网络的鲁棒性,并研究了增加的鲁棒性取决于添加的链接数量和使用的启发式方法。我们发现,使用我们的启发式方法向稀疏网络(例如栖息地网络)添加链接会比随机添加链接对聚类系数产生更大的影响。在向网络添加两条链接的情况下,贪婪算法几乎在所有情况下都能提供最佳结果。此外,使用贪婪算法或懒惰贪婪算法添加额外链接的数量越多,网络的鲁棒性就会增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf16/7575089/cecb9d8ae274/pone.0240940.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验