Suppr超能文献

双泡形态:弯曲弹性、表面张力和附着力之间的竞争。

Morphologies of Vesicle Doublets: Competition among Bending Elasticity, Surface Tension, and Adhesion.

作者信息

Murakami Kei, Ebihara Ryuta, Kono Takuma, Chiba Toshikaze, Sakuma Yuka, Ziherl Primož, Imai Masayuki

机构信息

Department of Physics, Tohoku University, Aoba, Sendai, Japan.

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia.

出版信息

Biophys J. 2020 Nov 3;119(9):1735-1748. doi: 10.1016/j.bpj.2020.09.030. Epub 2020 Oct 2.

Abstract

To study the mechanical laws governing the form of multicellular organisms, we examine the morphology of adhering vesicle doublets as the simplest model system. We monitor the morphological transformations of doublets induced by changes of adhesion strength and volume/area ratio, which are controlled by intermembrane interactions and thermal area expansion, respectively. When we increase the temperature in the weak adhesion regime, a dumbbell flat-contact doublet is transformed to a parallel-prolate doublet, whereas in the strong adhesion regime, heating transforms the dumbbell flat-contact doublet into a spherical sigmoid-contact doublet. We reproduce the observed doublet morphologies by numerically minimizing the total energy, including the contact-potential adhesion term as well as the surface and bending terms, using the Surface Evolver package. From the reproduced morphologies, we extract the adhesion strength, the surface tension, and the volume/area ratio of the vesicles, which reveals the detailed mechanisms of the morphological transitions in doublets.

摘要

为了研究控制多细胞生物体形态的力学规律,我们将附着的囊泡双联体的形态作为最简单的模型系统进行研究。我们监测由粘附强度和体积/面积比变化引起的双联体形态转变,这些变化分别由膜间相互作用和热面积膨胀控制。当我们在弱粘附状态下升高温度时,哑铃形平面接触双联体转变为平行长圆形双联体,而在强粘附状态下,加热将哑铃形平面接触双联体转变为球形S形接触双联体。我们使用Surface Evolver软件包,通过数值最小化总能量(包括接触势粘附项以及表面项和弯曲项)来重现观察到的双联体形态。从重现的形态中,我们提取了囊泡的粘附强度、表面张力和体积/面积比,这揭示了双联体形态转变的详细机制。

相似文献

2
Flat and sigmoidally curved contact zones in vesicle-vesicle adhesion.囊泡-囊泡黏附中的扁平及S形弯曲接触区。
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):761-5. doi: 10.1073/pnas.0607633104. Epub 2007 Jan 10.
4
Coupling of bending and stretching deformations in vesicle membranes.囊泡膜中的弯曲和拉伸变形的耦合。
Adv Colloid Interface Sci. 2014 Jun;208:14-24. doi: 10.1016/j.cis.2014.02.008. Epub 2014 Feb 18.
5
Adhesion of fluid vesicles at chemically structured substrates.流体囊泡在化学结构化基底上的黏附。
Eur Phys J E Soft Matter. 2007 Nov;24(3):217-27. doi: 10.1140/epje/i2007-10232-2. Epub 2007 Nov 29.
6
Morphology of small aggregates of red blood cells.红细胞小聚集体的形态学
Bioelectrochemistry. 2008 Aug;73(2):84-91. doi: 10.1016/j.bioelechem.2007.12.002. Epub 2008 Jan 2.
7
Small membranes under negative surface tension.处于负表面张力下的小膜
J Chem Phys. 2015 Mar 28;142(12):124902. doi: 10.1063/1.4915512.

引用本文的文献

本文引用的文献

3
Asymmetric Ionic Conditions Generate Large Membrane Curvatures.不对称离子条件产生大的膜曲率。
Nano Lett. 2018 Dec 12;18(12):7816-7821. doi: 10.1021/acs.nanolett.8b03584. Epub 2018 Nov 28.
4
Migration of Deformable Vesicles Induced by Ionic Stimuli.离子刺激诱导的变形囊泡的迁移。
Langmuir. 2018 Sep 25;34(38):11484-11494. doi: 10.1021/acs.langmuir.8b02105. Epub 2018 Sep 12.
9
Modulating Vesicle Adhesion by Electric Fields.通过电场调节囊泡黏附
Biophys J. 2016 Oct 4;111(7):1454-1464. doi: 10.1016/j.bpj.2016.08.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验