Murakami Kei, Ebihara Ryuta, Kono Takuma, Chiba Toshikaze, Sakuma Yuka, Ziherl Primož, Imai Masayuki
Department of Physics, Tohoku University, Aoba, Sendai, Japan.
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia.
Biophys J. 2020 Nov 3;119(9):1735-1748. doi: 10.1016/j.bpj.2020.09.030. Epub 2020 Oct 2.
To study the mechanical laws governing the form of multicellular organisms, we examine the morphology of adhering vesicle doublets as the simplest model system. We monitor the morphological transformations of doublets induced by changes of adhesion strength and volume/area ratio, which are controlled by intermembrane interactions and thermal area expansion, respectively. When we increase the temperature in the weak adhesion regime, a dumbbell flat-contact doublet is transformed to a parallel-prolate doublet, whereas in the strong adhesion regime, heating transforms the dumbbell flat-contact doublet into a spherical sigmoid-contact doublet. We reproduce the observed doublet morphologies by numerically minimizing the total energy, including the contact-potential adhesion term as well as the surface and bending terms, using the Surface Evolver package. From the reproduced morphologies, we extract the adhesion strength, the surface tension, and the volume/area ratio of the vesicles, which reveals the detailed mechanisms of the morphological transitions in doublets.
为了研究控制多细胞生物体形态的力学规律,我们将附着的囊泡双联体的形态作为最简单的模型系统进行研究。我们监测由粘附强度和体积/面积比变化引起的双联体形态转变,这些变化分别由膜间相互作用和热面积膨胀控制。当我们在弱粘附状态下升高温度时,哑铃形平面接触双联体转变为平行长圆形双联体,而在强粘附状态下,加热将哑铃形平面接触双联体转变为球形S形接触双联体。我们使用Surface Evolver软件包,通过数值最小化总能量(包括接触势粘附项以及表面项和弯曲项)来重现观察到的双联体形态。从重现的形态中,我们提取了囊泡的粘附强度、表面张力和体积/面积比,这揭示了双联体形态转变的详细机制。