Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile.
Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.
Int J Mol Sci. 2020 Oct 18;21(20):7704. doi: 10.3390/ijms21207704.
Mitochondria are the first-line defense of the cell in the presence of stressing processes that can induce mitochondrial dysfunction. Under these conditions, the activation of two axes is accomplished, namely, (i) the mitochondrial unfolded protein response (UPR) to promote cell recovery and survival of the mitochondrial network; (ii) the mitophagy process to eliminate altered or dysfunctional mitochondria. For these purposes, the former response induces the expression of chaperones, proteases, antioxidant components and protein import and assembly factors, whereas the latter is signaled through the activation of the PINK1/Parkin and BNIP3/NIX pathways. These adaptive mechanisms may be compromised during aging, leading to the development of several pathologies including sarcopenia, defined as the loss of skeletal muscle mass and performance; and non-alcoholic fatty liver disease (NAFLD). These age-associated diseases are characterized by the progressive loss of organ function due to the accumulation of reactive oxygen species (ROS)-induced damage to biomolecules, since the ability to counteract the continuous and large generation of ROS becomes increasingly inefficient with aging, resulting in mitochondrial dysfunction as a central pathogenic mechanism. Nevertheless, the role of the integrated stress response (ISR) involving UPR and mitophagy in the development and progression of these illnesses is still a matter of debate, considering that some studies indicate that the prolonged exposure to low levels of stress may trigger these mechanisms to maintain mitohormesis, whereas others sustain that chronic activation of them could lead to cell death. In this review, we discuss the available research that contributes to unveil the role of the mitochondrial UPR in the development of sarcopenia, in an attempt to describe changes prior to the manifestation of severe symptoms; and in NAFLD, in order to prevent or reverse fat accumulation and its progression by means of suitable protocols to be addressed in future studies.
线粒体是细胞在应激过程中出现功能障碍时的第一道防线。在这些条件下,会完成两个轴的激活,即 (i) 线粒体未折叠蛋白反应 (UPR),以促进细胞恢复和保留线粒体网络;(ii) 线粒体自噬过程,以消除改变或功能失调的线粒体。为此,前者反应会诱导伴侣蛋白、蛋白酶、抗氧化成分和蛋白输入及组装因子的表达,而后者则通过 PINK1/Parkin 和 BNIP3/NIX 途径的激活来发出信号。这些适应机制在衰老过程中可能会受到损害,导致多种病理学的发展,包括骨骼肌减少症,定义为骨骼肌质量和功能的丧失;以及非酒精性脂肪性肝病 (NAFLD)。这些与年龄相关的疾病的特征是由于生物分子中活性氧 (ROS) 诱导的损伤而导致器官功能逐渐丧失,因为随着年龄的增长,对抗不断产生的大量 ROS 的能力变得越来越低效,导致线粒体功能障碍成为一种中心致病机制。然而,涉及 UPR 和线粒体自噬的综合应激反应 (ISR) 在这些疾病的发展和进展中的作用仍然存在争议,因为一些研究表明,长时间暴露于低水平的应激可能会触发这些机制以维持线粒体激素作用,而其他研究则认为它们的慢性激活可能导致细胞死亡。在这篇综述中,我们讨论了现有的研究,这些研究有助于揭示线粒体 UPR 在骨骼肌减少症发展中的作用,试图描述在出现严重症状之前的变化;以及在非酒精性脂肪性肝病中,为了防止或逆转脂肪积累及其进展,可以采用适当的方案,这将在未来的研究中进行探讨。