基于多模态影像的肾细胞癌合并下腔静脉瘤栓患者下腔静脉壁肿瘤侵犯预测模型。
A Predictive Model for Tumor Invasion of the Inferior Vena Cava Wall Using Multimodal Imaging in Patients with Renal Cell Carcinoma and Inferior Vena Cava Tumor Thrombus.
机构信息
Department of Urology, Peking University Third Hospital, Beijing, China.
Department of Ultrasound, Peking University Third Hospital, Beijing, China.
出版信息
Biomed Res Int. 2020 Oct 6;2020:9530618. doi: 10.1155/2020/9530618. eCollection 2020.
PURPOSE
Developed a preoperative prediction model based on multimodality imaging to evaluate the probability of inferior vena cava (IVC) vascular wall invasion due to tumor infiltration.
MATERIALS AND METHODS
We retrospectively analyzed the clinical data of 110 patients with renal cell carcinoma (RCC) with level I-IV tumor thrombus who underwent radical nephrectomy and IVC thrombectomy between January 2014 and April 2019. The patients were categorized into two groups: 86 patients were used to establish the imaging model, and the data validation was conducted in 24 patients. We measured the imaging parameters and used logistic regression to evaluate the uni- and multivariable associations of the clinical and radiographic features of IVC resection and established an image prediction model to assess the probability of IVC vascular wall invasion.
RESULTS
In all of the patients, 46.5% (40/86) had IVC vascular wall invasion. The residual IVC blood flow (OR 0.170 [0.047-0.611]; = 0.007), maximum coronal IVC diameter in mm (OR 1.203 [1.065-1.360]; = 0.003), and presence of bland thrombus (OR 3.216 [0.870-11.887]; = 0.080) were independent risk factors of IVC vascular wall invasion. We predicted vascular wall invasion if the probability was >42% as calculated by: {Ln [Pre/(1 - pre)] = 0.185 × maximum cornal IVC diameter + 1.168 × bland thrombus-1.770 × residual IVC blood flow-5.857}. To predict IVC vascular wall invasion, a rate of 76/86 (88.4%) was consistent with the actual treatment, and in the validation patients, 21/26 (80.8%) was consistent with the actual treatment.
CONCLUSIONS
Our model of multimodal imaging associated with IVC vascular wall invasion may be used for preoperative evaluation and prediction of the probability of partial or segmental IVC resection.
目的
基于多模态影像学开发一种术前预测模型,以评估肿瘤浸润导致下腔静脉(IVC)血管壁侵犯的概率。
材料与方法
我们回顾性分析了 2014 年 1 月至 2019 年 4 月期间接受根治性肾切除术和 IVC 血栓切除术的 110 例 I-IV 级肾细胞癌(RCC)患者的临床资料。患者被分为两组:86 例患者用于建立影像学模型,24 例患者用于数据验证。我们测量了影像学参数,并使用逻辑回归评估了 IVC 切除的临床和影像学特征的单变量和多变量相关性,建立了一个图像预测模型来评估 IVC 血管壁侵犯的概率。
结果
在所有患者中,46.5%(40/86)存在 IVC 血管壁侵犯。残余 IVC 血流(OR 0.170 [0.047-0.611]; = 0.007)、最大冠状 IVC 直径(OR 1.203 [1.065-1.360]; = 0.003)和存在软性血栓(OR 3.216 [0.870-11.887]; = 0.080)是 IVC 血管壁侵犯的独立危险因素。我们预测血管壁侵犯的概率>42%,计算方法为:{Ln[Pre/(1-pre)]=0.185×最大冠状 IVC 直径+1.168×软性血栓-1.770×残余 IVC 血流-5.857}。为了预测 IVC 血管壁侵犯,模型预测 86 例中的 76 例(88.4%)与实际治疗情况一致,在验证患者中,26 例中的 21 例(80.8%)与实际治疗情况一致。
结论
我们的多模态影像学与 IVC 血管壁侵犯相关的模型可用于术前评估和预测部分或节段性 IVC 切除的概率。