School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
Mol Omics. 2020 Dec 1;16(6):583-591. doi: 10.1039/d0mo00062k. Epub 2020 Oct 21.
Identifying drug-target interactions (DTIs) is an important part of drug discovery and development. However, identifying DTIs is a complex process that is time consuming, costly, long, and often inefficient, with a low success rate, especially with wet-experimental methods. Computational methods based on drug repositioning and network pharmacology can effectively overcome these defects. In this paper, we develop a new fusion method, called FPSC-DTI, that fuses feature projection fuzzy classification (FP) and super cluster classification (SC) to predict DTI. As the experimental result, the mean percentile ranking (MPR) that was yielded by FPSC-DTI achieved 0.043, 0.084, 0.072, and 0.146 on enzyme, ion channel (IC), G-protein-coupled receptor (GPCR), and nuclear receptor (NR) datasets, respectively. And the AUC values exceeded 0.969 over all four datasets. Compared with other methods, FPSC-DTI obtained better predictive performance and became more robust.
鉴定药物-靶点相互作用(DTIs)是药物发现和开发的重要组成部分。然而,鉴定 DTIs 是一个复杂的过程,耗时、昂贵、漫长,而且通常效率低下,成功率低,特别是使用湿实验方法。基于药物重定位和网络药理学的计算方法可以有效地克服这些缺陷。在本文中,我们开发了一种新的融合方法,称为 FPSC-DTI,它融合了特征投影模糊分类(FP)和超级聚类分类(SC)来预测 DTI。作为实验结果,FPSC-DTI 产生的平均百分位数排名(MPR)在酶、离子通道(IC)、G 蛋白偶联受体(GPCR)和核受体(NR)数据集上分别达到 0.043、0.084、0.072 和 0.146。并且在所有四个数据集上的 AUC 值都超过了 0.969。与其他方法相比,FPSC-DTI 获得了更好的预测性能,并且更加稳健。