Suppr超能文献

FPSC-DTI:基于特征投影模糊分类和超级聚类融合的药物-靶标相互作用预测。

FPSC-DTI: drug-target interaction prediction based on feature projection fuzzy classification and super cluster fusion.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.

出版信息

Mol Omics. 2020 Dec 1;16(6):583-591. doi: 10.1039/d0mo00062k. Epub 2020 Oct 21.

Abstract

Identifying drug-target interactions (DTIs) is an important part of drug discovery and development. However, identifying DTIs is a complex process that is time consuming, costly, long, and often inefficient, with a low success rate, especially with wet-experimental methods. Computational methods based on drug repositioning and network pharmacology can effectively overcome these defects. In this paper, we develop a new fusion method, called FPSC-DTI, that fuses feature projection fuzzy classification (FP) and super cluster classification (SC) to predict DTI. As the experimental result, the mean percentile ranking (MPR) that was yielded by FPSC-DTI achieved 0.043, 0.084, 0.072, and 0.146 on enzyme, ion channel (IC), G-protein-coupled receptor (GPCR), and nuclear receptor (NR) datasets, respectively. And the AUC values exceeded 0.969 over all four datasets. Compared with other methods, FPSC-DTI obtained better predictive performance and became more robust.

摘要

鉴定药物-靶点相互作用(DTIs)是药物发现和开发的重要组成部分。然而,鉴定 DTIs 是一个复杂的过程,耗时、昂贵、漫长,而且通常效率低下,成功率低,特别是使用湿实验方法。基于药物重定位和网络药理学的计算方法可以有效地克服这些缺陷。在本文中,我们开发了一种新的融合方法,称为 FPSC-DTI,它融合了特征投影模糊分类(FP)和超级聚类分类(SC)来预测 DTI。作为实验结果,FPSC-DTI 产生的平均百分位数排名(MPR)在酶、离子通道(IC)、G 蛋白偶联受体(GPCR)和核受体(NR)数据集上分别达到 0.043、0.084、0.072 和 0.146。并且在所有四个数据集上的 AUC 值都超过了 0.969。与其他方法相比,FPSC-DTI 获得了更好的预测性能,并且更加稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验