Brief Bioinform. 2019 Jul 19;20(4):1337-1357. doi: 10.1093/bib/bby002.
Computational prediction of drug-target interactions (DTIs) has become an essential task in the drug discovery process. It narrows down the search space for interactions by suggesting potential interaction candidates for validation via wet-lab experiments that are well known to be expensive and time-consuming. In this article, we aim to provide a comprehensive overview and empirical evaluation on the computational DTI prediction techniques, to act as a guide and reference for our fellow researchers. Specifically, we first describe the data used in such computational DTI prediction efforts. We then categorize and elaborate the state-of-the-art methods for predicting DTIs. Next, an empirical comparison is performed to demonstrate the prediction performance of some representative methods under different scenarios. We also present interesting findings from our evaluation study, discussing the advantages and disadvantages of each method. Finally, we highlight potential avenues for further enhancement of DTI prediction performance as well as related research directions.
计算药物-靶标相互作用(DTI)的预测已成为药物发现过程中的一项重要任务。它通过建议通过湿实验室实验验证的潜在相互作用候选物,缩小了相互作用的搜索空间,而湿实验室实验众所周知是昂贵且耗时的。在本文中,我们旨在对计算 DTI 预测技术进行全面概述和实证评估,为我们的研究人员提供指导和参考。具体来说,我们首先描述了此类计算 DTI 预测工作中使用的数据。然后,我们对用于预测 DTI 的最新方法进行分类和详细阐述。接下来,进行实证比较以在不同情况下展示一些代表性方法的预测性能。我们还从评估研究中呈现有趣的发现,讨论每种方法的优缺点。最后,我们强调进一步提高 DTI 预测性能以及相关研究方向的潜在途径。