Suppr超能文献

通过设计含电子激活的磺酰胺基环炔来实现三重、相互正交的生物正交对。

Triple, Mutually Orthogonal Bioorthogonal Pairs through the Design of Electronically Activated Sulfamate-Containing Cycloalkynes.

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

J Am Chem Soc. 2020 Nov 4;142(44):18826-18835. doi: 10.1021/jacs.0c06725. Epub 2020 Oct 21.

Abstract

Interest in mutually exclusive pairs of bioorthogonal labeling reagents continues to drive the design of new compounds that are capable of fast and predictable reactions. The ability to easily modify S-, N-, and O-containing cyclooctynes (SNO-OCTs) enables electronic tuning of various SNO-OCTs to influence their cycloaddition rates with Type I-III dipoles. As opposed to optimizations based on just one specific dipole class, the electrophilicity of the alkynes in SNO-OCTs can be manipulated to achieve divergent reactivities and furnish mutually orthogonal dual ligation systems. Significant reaction rate enhancements of a difluorinated SNO-OCT derivative, as compared to the parent scaffold, were noted, with the second-order rate constant in cycloadditions with diazoacetamides exceeding 5.13 M s. Computational and experimental studies were employed to inform the design of triple ligation systems that encompass three orthogonal reactivities. Finally, polar SNO-OCTs are rapidly internalized by mammalian cells and remain functional in the cytosol for live-cell labeling, highlighting their potential for diverse in vitro and in vivo applications.

摘要

人们对互斥的生物正交标记试剂的兴趣持续推动着新化合物的设计,这些新化合物能够实现快速和可预测的反应。S、N 和 O 型环辛炔(SNO-OCT)的易修饰性使各种 SNO-OCT 的电子结构能够得到调整,从而影响它们与 I 型-III 型偶极子的环加成反应速率。与仅基于一种特定偶极子类别的优化相反,可以操纵 SNO-OCT 中炔烃的亲电性以实现不同的反应性,并提供相互正交的双重连接系统。与母体支架相比,氟化 SNO-OCT 衍生物的反应速率显著提高,与重氮乙酰胺的环加成的二级速率常数超过 5.13 M s。通过计算和实验研究为包含三个正交反应性的三重连接系统的设计提供了信息。最后,极性 SNO-OCT 被哺乳动物细胞快速内化,并在细胞质中保持功能以进行活细胞标记,这突出了它们在各种体外和体内应用中的潜力。

相似文献

8
From mechanism to mouse: a tale of two bioorthogonal reactions.从机制到小鼠:两种生物正交反应的故事。
Acc Chem Res. 2011 Sep 20;44(9):666-76. doi: 10.1021/ar200148z. Epub 2011 Aug 15.

引用本文的文献

5
Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules.谷胱甘肽介导生物分子双差异生物正交标记的控制。
Angew Chem Weinheim Bergstr Ger. 2023 Dec 11;135(50):e202313063. doi: 10.1002/ange.202313063. Epub 2023 Nov 13.
9
Photoinduced movement: how photoirradiation induced the movements of matter.光致运动:光辐照如何引发物质的运动。
Sci Technol Adv Mater. 2022 Nov 30;23(1):796-844. doi: 10.1080/14686996.2022.2142955. eCollection 2022.

本文引用的文献

1
Trends in Therapeutic Conjugates: Bench to Clinic.治疗性偶联物的发展趋势:从实验室到临床。
Bioconjug Chem. 2020 Mar 18;31(3):462-473. doi: 10.1021/acs.bioconjchem.9b00828. Epub 2020 Feb 11.
2
3
The Bioorthogonal Isonitrile-Chlorooxime Ligation.生物正交异腈-氯代肟连接。
J Am Chem Soc. 2019 Nov 27;141(47):18644-18648. doi: 10.1021/jacs.9b07632. Epub 2019 Nov 18.
5
Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx.哺乳动物糖萼的定量超分辨率显微镜技术
Dev Cell. 2019 Jul 1;50(1):57-72.e6. doi: 10.1016/j.devcel.2019.04.035. Epub 2019 May 16.
9
Equilibrium Modeling of the Mechanics and Structure of the Cancer Glycocalyx.癌症糖萼的力学和结构的平衡建模。
Biophys J. 2019 Feb 19;116(4):694-708. doi: 10.1016/j.bpj.2018.12.023. Epub 2019 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验