Bioconjug Chem. 2019 May 15;30(5):1554-1564. doi: 10.1021/acs.bioconjchem.9b00246. Epub 2019 May 3.
Precise control of covalent bond formation in the presence of multiple functional groups is pertinent in the development of many next-generation bioconjugates and materials. Strategies derived from bioorthogonal chemistries are contributing greatly in that regard; however, the gain of chemoselectivity is often compromised by the slow rates of many of these existing chemistries. Recent work on a variation of the classical aldehyde/ketone condensation based on ortho-carbonylphenylboronic acids has uncovered markedly accelerated rates compared to those of the simple carbonyl counterparts. The products of these reactions are distinct, often in the form of boron-nitrogen heterocycles. In particular, we have shown that 2-formylphenylboronic acid (2fPBA), when coupled with an α-amino-hydrazide, produces a unique zwitterionic and stable 2,3,1-benzodiazaborine derivative. In this work, we apply this chemistry to generate chemically defined and functional bioconjugates, herein illustrated with immunoconjugates. We show that an antibody and a fluorophore (as payload) equipped with the relevant reactive handles undergo rapid conjugation at near-stoichiometric ratios, displaying a reaction half-life of only ∼5 min with 2 equiv of the linker payload. Importantly, the reaction can be extended to multicomponent labeling by partnering with the popular strain-promoted azide-alkyne cycloaddition and tetrazine- trans-cyclooctene (Tz-TCO) ligation. The mutual orthogonality to both of these chemistries allows simultaneous triple bioorthogonal conjugations, a rare feat thus far that will widen the scope of various multilabeling applications. Further collaboration with the Tz-TCO reaction enables rapid one-pot synthesis of a site-specific dual-payload antibody conjugate. Altogether, we envision that the 2fPBA-α-amino-hydrazide ligation will facilitate efficient assembly of diverse bioconjugates and materials, enabling access to more complex modalities via partnership with other orthogonal chemistries.
在存在多个官能团的情况下,精确控制共价键的形成对于许多下一代生物缀合物和材料的发展至关重要。源自生物正交化学的策略在这方面做出了巨大贡献;然而,许多现有化学物质的反应速率较慢,往往会牺牲化学选择性。最近,人们对基于邻羰基苯硼酸的经典醛/酮缩合反应变体进行了研究,发现与简单羰基对应物相比,反应速率明显加快。这些反应的产物是不同的,通常是以硼-氮杂环的形式。特别是,我们已经表明,2-甲酰基苯硼酸(2fPBA)与α-氨基酰肼偶联时,会产生独特的两性离子和稳定的 2,3,1-苯并二氮杂硼烷衍生物。在这项工作中,我们应用这种化学方法来生成化学定义和功能的生物缀合物,本文通过免疫缀合物来说明。我们表明,带有相关反应性官能团的抗体和荧光团(作为有效载荷)在接近化学计量比的条件下快速缀合,在使用 2 当量的连接子有效载荷时,反应半衰期仅约为 5 分钟。重要的是,通过与流行的应变促进叠氮-炔环加成和四嗪-反式环辛烯(Tz-TCO)键合反应相结合,该反应可以扩展到多组分标记。这两种化学方法的相互正交性允许同时进行三重生物正交缀合,这是迄今为止罕见的壮举,将拓宽各种多标记应用的范围。与 Tz-TCO 反应的进一步合作使快速一锅法合成具有定点双有效载荷的抗体缀合物成为可能。总的来说,我们设想 2fPBA-α-氨基酰肼键合将促进各种生物缀合物和材料的高效组装,并通过与其他正交化学的合作,为更复杂的模式提供途径。