Suppr超能文献

β-羟基稳定的硼氮杂环能够实现快速高效的 C 末端蛋白质修饰。

β-Hydroxy-Stabilized Boron-Nitrogen Heterocycles Enable Rapid and Efficient C-Terminal Protein Modification.

机构信息

Department of Chemistry , Binghamton University, State University of New York , Binghamton , New York 13902 , United States.

Department of Chemistry and Chemical Biology , Michigan State University , East Lansing , Michigan 48824 , United States.

出版信息

Bioconjug Chem. 2019 Oct 16;30(10):2604-2613. doi: 10.1021/acs.bioconjchem.9b00534. Epub 2019 Sep 18.

Abstract

Bioorthogonal chemistry has enabled the development of bioconjugates in physiological environments while averting interference from endogenous biomolecules. Reactions between carbonyl-containing molecules and alkoxyamines or hydrazines have experienced a resurgence in popularity in bioorthogonal chemistry owing to advances that allow the reactions to occur under physiological conditions. In particular, -carbonyl-substituted phenylboronic acids (CO-PBAs) exhibit greatly accelerated rates of hydrazone and oxime formation via intramolecular Lewis acid catalysis. Unfortunately, the rate of the reverse reaction is also increased, yielding a kinetically less stable bioconjugate. When the substrate is a hydrazine derivative, an intramolecular reaction between the boronic acid and the hydrazone can lead to the formation of a heterocycle containing a boron-nitrogen bond. We have shown previously that α-amino hydrazides undergo rapid reaction with CO-PBAs to form highly stable, tricyclic products, and that this reaction is orthogonal to the popular azide-alkyne and tetrazine-alkene reactions. In this work, we explore a series of heteroatom-substituted hydrazides for their ability to form tricyclic products with two CO-PBAs, 2-formylphenylboronic acid (2fPBA), and 2-acetylphenylboronic acid (AcPBA). In particular, highly stable products were formed using β-hydroxy hydrazides and 2fPBA. C-Terminal β-hydroxy hydrazide proteins are available using conventional biochemical methods, which alleviates one of the difficulties with applications of bioorthogonal chemical reactions: site-specific incorporation of a reactive group into the biomolecular target. Using sortase-mediated ligation (SML), C-terminal threonine and serine hydrazides were appended to a model eGFP protein in high yield. Subsequent labeling with 2fPBA functionalized probes could be performed quickly and quantitatively at neutral pH using micromolar concentrations of reactants. The SML process was applied directly to an expressed protein in cellular extract, and the C-terminal modified target protein was selectively immobilized using 2fPBA-agarose. Elution from the agarose yielded a highly pure protein that retained the hydrazide functionality. This strategy should be generally applicable for rapid, efficient site-specific protein labeling, protein immobilization, and preparation of highly pure functionalized proteins.

摘要

生物正交化学使得在生理环境中开发生物缀合物成为可能,同时避免了内源性生物分子的干扰。由于在生理条件下进行反应的技术进步,羰基化合物与烷氧基胺或腙之间的反应在生物正交化学中重新流行起来。特别是,-羰基取代的苯硼酸(CO-PBAs)通过分子内路易斯酸催化极大地加速了腙和肟的形成速率。不幸的是,逆反应的速率也增加了,导致生物缀合物的动力学稳定性降低。当底物是腙衍生物时,硼酸和腙之间的分子内反应会导致形成含有硼-氮键的杂环。我们之前已经表明,α-氨基腙与 CO-PBAs 快速反应形成高度稳定的三环产物,并且该反应与流行的叠氮化物-炔烃和四嗪-烯烃反应正交。在这项工作中,我们探索了一系列杂原子取代的腙,以研究它们与两个 CO-PBAs(2-甲酰基苯硼酸(2fPBA)和 2-乙酰基苯硼酸(AcPBA))形成三环产物的能力。特别是,使用β-羟基腙和 2fPBA 形成了高度稳定的产物。使用常规生化方法可获得 C 末端β-羟基腙蛋白,这减轻了生物正交化学反应应用中的一个难题:将反应性基团特异性地掺入生物分子靶标中。通过使用 sortase 介导的连接(SML),C 末端苏氨酸和丝氨酸腙以高产率被缀合到模型 eGFP 蛋白上。随后,可以使用反应物的微摩尔浓度在中性 pH 下快速且定量地进行用 2fPBA 功能化探针进行标记。SML 过程直接应用于细胞提取物中的表达蛋白,并且使用 2fPBA-琼脂糖可以选择性地固定 C 末端修饰的靶蛋白。从琼脂糖洗脱得到高度纯的保留了腙功能的蛋白质。该策略应该普遍适用于快速、高效的蛋白质特异性标记、蛋白质固定化以及高度纯的功能性蛋白质的制备。

相似文献

1
β-Hydroxy-Stabilized Boron-Nitrogen Heterocycles Enable Rapid and Efficient C-Terminal Protein Modification.
Bioconjug Chem. 2019 Oct 16;30(10):2604-2613. doi: 10.1021/acs.bioconjchem.9b00534. Epub 2019 Sep 18.
2
Site-Specific Bioconjugation and Multi-Bioorthogonal Labeling via Rapid Formation of a Boron-Nitrogen Heterocycle.
Bioconjug Chem. 2019 May 15;30(5):1554-1564. doi: 10.1021/acs.bioconjchem.9b00246. Epub 2019 May 3.
4
Merging Boron with Nitrogen-Oxygen Bonds: A Review on BON Heterocycles.
Top Curr Chem (Cham). 2021 Feb 5;379(2):8. doi: 10.1007/s41061-020-00317-3.
5
Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins.
Acc Chem Res. 2011 Sep 20;44(9):762-73. doi: 10.1021/ar200046h. Epub 2011 Jun 7.
7
Intramolecular Catalysis of Hydrazone Formation of Aryl-Aldehydes via ortho-Phosphate Proton Exchange.
Synlett. 2016 Jun;27(9):1335-1338. doi: 10.1055/s-0035-1561387. Epub 2016 Feb 17.
8
Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
Chembiochem. 2018 Aug 6;19(15):1648-1652. doi: 10.1002/cbic.201800275. Epub 2018 Jun 28.
9
Versatile Bioconjugation Chemistries of ortho-Boronyl Aryl Ketones and Aldehydes.
Acc Chem Res. 2018 Sep 18;51(9):2198-2206. doi: 10.1021/acs.accounts.8b00154. Epub 2018 Aug 15.

引用本文的文献

2
Boron enabled bioconjugation chemistries.
Chem Soc Rev. 2024 Dec 9;53(24):11888-11907. doi: 10.1039/d4cs00750f.
3
The linkage-type and the exchange molecule affect the protein-labeling efficiency of iminoboronate probes.
Org Biomol Chem. 2023 Nov 29;21(46):9173-9181. doi: 10.1039/d3ob01269g.
5
Regioselective alkylation of 2,4-dihydroxybenzyaldehydes and 2,4-dihydroxyacetophenones.
Tetrahedron Lett. 2022 Apr 13;95. doi: 10.1016/j.tetlet.2022.153755. Epub 2022 Mar 23.
6
Boronic acid based dynamic click chemistry: recent advances and emergent applications.
Chem Sci. 2020 Dec 17;12(5):1585-1599. doi: 10.1039/d0sc05009a.
7
Iminoboronates as Dual-Purpose Linkers in Chemical Probe Development.
Chemistry. 2021 Feb 15;27(10):3292-3296. doi: 10.1002/chem.202005115. Epub 2021 Jan 14.
8
Triple, Mutually Orthogonal Bioorthogonal Pairs through the Design of Electronically Activated Sulfamate-Containing Cycloalkynes.
J Am Chem Soc. 2020 Nov 4;142(44):18826-18835. doi: 10.1021/jacs.0c06725. Epub 2020 Oct 21.
9
Expanding the Versatility of Microbial Transglutaminase Using α-Effect Nucleophiles as Noncanonical Substrates.
Angew Chem Int Ed Engl. 2020 Aug 10;59(33):13814-13820. doi: 10.1002/anie.202001830. Epub 2020 Jun 3.
10
Protein-Nucleic Acid Conjugation with Sterol Linkers Using Hedgehog Autoprocessing.
Bioconjug Chem. 2019 Nov 20;30(11):2799-2804. doi: 10.1021/acs.bioconjchem.9b00550. Epub 2019 Oct 10.

本文引用的文献

1
Boronic acids as building blocks for the construction of therapeutically useful bioconjugates.
Chem Soc Rev. 2019 Jul 1;48(13):3513-3536. doi: 10.1039/c9cs00184k.
2
Site-Specific Bioconjugation and Multi-Bioorthogonal Labeling via Rapid Formation of a Boron-Nitrogen Heterocycle.
Bioconjug Chem. 2019 May 15;30(5):1554-1564. doi: 10.1021/acs.bioconjchem.9b00246. Epub 2019 May 3.
4
The Future of Bioorthogonal Chemistry.
ACS Cent Sci. 2018 Aug 22;4(8):952-959. doi: 10.1021/acscentsci.8b00251. Epub 2018 Jul 23.
5
Versatile Bioconjugation Chemistries of ortho-Boronyl Aryl Ketones and Aldehydes.
Acc Chem Res. 2018 Sep 18;51(9):2198-2206. doi: 10.1021/acs.accounts.8b00154. Epub 2018 Aug 15.
6
Discovery of new mutually orthogonal bioorthogonal cycloaddition pairs through computational screening.
Chem Sci. 2016 Feb 1;7(2):1257-1261. doi: 10.1039/c5sc03259h. Epub 2015 Nov 11.
7
N,O-Iminoboronates: Reversible Iminoboronates with Improved Stability for Cancer Cells Targeted Delivery.
Chemistry. 2018 Aug 27;24(48):12495-12499. doi: 10.1002/chem.201802515. Epub 2018 Jul 23.
8
Constructing New Bioorthogonal Reagents and Reactions.
Acc Chem Res. 2018 May 15;51(5):1073-1081. doi: 10.1021/acs.accounts.7b00606. Epub 2018 May 4.
9
Bioorthogonal strategies for site-directed decoration of biomaterials with therapeutic proteins.
J Control Release. 2018 Mar 10;273:68-85. doi: 10.1016/j.jconrel.2018.01.018. Epub 2018 Jan 31.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验