Suppr超能文献

基于惯性测量单元的圆形和线性行走步态事件识别的有限类贝叶斯推理系统。

Finite Class Bayesian Inference System for Circle and Linear Walking Gait Event Recognition Using Inertial Measurement Units.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2869-2879. doi: 10.1109/TNSRE.2020.3032703. Epub 2021 Jan 28.

Abstract

Accurate and fast human motion pattern recognition is the key to ensuring lower limb assistive devices' appropriate assistance. The research on human motion pattern recognition of lower limb assistive devices mainly focuses on sagittal gait. The motion pattern such as circular walking (CW) is asymmetric about the sagittal plane of the body. CW is common in daily living. However, the recognition algorithm of CW is rarely reported. Since lower limb assistive devices interact with humans, lacking the capability of recognizing CW is dangerous. Thus, to realize the accurate and fast recognition of CW, this article proposed a finite class Bayesian interference system (FC-BesIS). FC-BesIS is designed to recognize walking activities (linear walking and CW) and gait events (heel contact, load response, mid stance, terminal stance, pre-swing, initial swing, mid swing, and terminal swing). A finite class method which reduces the number of potential classes according to elimination rules before decision-making is introduced. Elimination rules are designed based on likelihood estimation and sensor information. The experiments show that walking activities and gait events can be accurately and fastly recognized by FC-BesIS. The experiments also show that the performance of FC-BesIS in mean recognition accuracy (MRA) and mean decision time (MDT) is improved compared with BesIS. The MRA of walking activities and gait events are 100% and 97.38%, respectively. The MDT of walking activities and gait events are 28.19 ms and 33.94 ms, respectively. Overall, FC-BesIS has been proved to be an accurate and fast recognition algorithm for human motion patterns using wearable sensors.

摘要

准确快速的人体运动模式识别是确保下肢辅助设备提供适当辅助的关键。下肢辅助设备的人体运动模式识别研究主要集中在矢状面步态上。而圆周行走(CW)等运动模式相对于身体的矢状面是不对称的。CW 在日常生活中很常见。然而,CW 的识别算法却很少有报道。由于下肢辅助设备与人类相互作用,如果缺乏识别 CW 的能力是很危险的。因此,为了实现 CW 的准确快速识别,本文提出了一种有限类贝叶斯干扰系统(FC-BesIS)。FC-BesIS 旨在识别行走活动(线性行走和 CW)和步态事件(脚跟接触、负荷反应、中间支撑、末端支撑、预摆、初始摆动、中间摆动和末端摆动)。引入了一种有限类方法,该方法根据决策前的消除规则减少潜在类别的数量。消除规则是基于似然估计和传感器信息设计的。实验表明,FC-BesIS 可以准确快速地识别行走活动和步态事件。实验还表明,与 BesIS 相比,FC-BesIS 在平均识别准确率(MRA)和平均决策时间(MDT)方面的性能有所提高。行走活动和步态事件的 MRA 分别为 100%和 97.38%。行走活动和步态事件的 MDT 分别为 28.19ms 和 33.94ms。总的来说,FC-BesIS 已经被证明是一种使用可穿戴传感器进行人体运动模式准确快速识别的算法。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验