Suppr超能文献

基于概率分布模型的可穿戴 IMU 传感器在早期摆动阶段预测足位置方法。

A Probability Distribution Model-Based Approach for Foot Placement Prediction in the Early Swing Phase With a Wearable IMU Sensor.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:2595-2604. doi: 10.1109/TNSRE.2021.3133656. Epub 2021 Dec 21.

Abstract

Predicting the next foot placement of humans during walking can help improve compliant interactions between humans and walking aid robots. Previous studies have focused on foot placement estimation with wearable inertial sensors after heel-strike, but few have predicted foot placements in advance during the early swing phase. In this study, a Bayesian inference-based foot placement prediction approach was proposed. Possible foot placements were modeled as a probability distribution grid map. With selected foot motion feature events detected sequentially in the early swing phase, the foot placement probability map could be updated iteratively using the feature models we built. The weighted center of the probability distribution was regarded as the predicted foot placement. Prediction errors were evaluated with collected walking data sets. When testing with the data from inertial measurement units, the prediction errors were (5.46 cm ± 10.89 cm, -0.83 cm ± 10.56 cm) for cross-velocity walking data and (-4.99 cm ± 12.31 cm, -11.27 cm ± 7.74 cm) for cross-subject-cross-velocity walking data. The results were comparable to previous works yet the prediction could be made earlier. For the subject who walked with more stable gaits, the prediction error can be further decreased. The proposed foot placement prediction approach can be utilized to help walking aid robots adjust their pose before each heel-strike event during walking, which will make human-robot interactions more compliant. This study is also expected to inspire additional probabilistic gait analysis works.

摘要

预测人类行走时的下一步足置有助于改善人类与助行机器人之间的顺应性交互。先前的研究主要集中在跟部触地后利用可穿戴惯性传感器进行足置估计,但很少有研究在早期摆动阶段提前预测足置。在这项研究中,提出了一种基于贝叶斯推理的足置预测方法。可能的足置被建模为概率分布网格图。通过在早期摆动阶段依次检测到选定的足运动特征事件,可以使用我们构建的特征模型对足置概率图进行迭代更新。概率分布的加权中心被视为预测的足置。通过收集的行走数据集评估预测误差。当使用惯性测量单元数据进行测试时,对于交叉速度行走数据,预测误差为(5.46 厘米±10.89 厘米,-0.83 厘米±10.56 厘米),对于跨受试者交叉速度行走数据,预测误差为(-4.99 厘米±12.31 厘米,-11.27 厘米±7.74 厘米)。结果与先前的工作相当,但预测可以更早进行。对于步态更稳定的受试者,预测误差可以进一步降低。所提出的足置预测方法可用于帮助助行机器人在行走过程中的每次跟部触地事件之前调整其姿势,从而使人机交互更加顺应。这项研究也有望激发更多基于概率的步态分析工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验