Suppr超能文献

基于机器学习的行走和楼梯步态阶段检测。

Gait Phase Detection in Walking and Stairs Using Machine Learning.

机构信息

School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

出版信息

J Biomech Eng. 2022 Dec 1;144(12). doi: 10.1115/1.4055504.

Abstract

Machine learning-based activity and gait phase recognition algorithms are used in powered motion assistive devices to inform control of motorized components. The objective of this study was to develop a supervised multiclass classifier to simultaneously detect activity and gait phase (stance, swing) in real-world walking, stair ascent, and stair descent using inertial measurement data from the thigh and shank. The intended use of this algorithm was for control of a motion assistive device local to the knee. Using data from 80 participants, two decision trees and five long short-term memory (LSTM) models that each used different feature sets were initially tested and evaluated using a novel performance metric: proportion of perfectly classified strides (PPCS). Based on the PPCS of these initial models, five additional posthoc LSTM models were tested. Separate models were developed to classify (i) both activity and gait phase simultaneously (one model predicting six states), and (ii) activity-specific models (three individual binary classifiers predicting stance/swing phases). The superior activity-specific model had an accuracy of 98.0% and PPCS of 55.7%. The superior six-phase model used filtered inertial measurement data as its features and a median filter on its predictions and had an accuracy of 92.1% and PPCS of 22.9%. Pooling stance and swing phases from all activities and treating this model as a binary classifier, this model had an accuracy of 97.1%, which may be acceptable for real-world lower limb exoskeleton control if only stance and swing gait phases must be detected. Keywords: machine learning, deep learning, inertial measurement unit, activity recognition, gait.

摘要

基于机器学习的活动和步态阶段识别算法被用于动力运动辅助设备中,以告知电动部件的控制。本研究的目的是开发一种监督的多类分类器,使用来自大腿和小腿的惯性测量数据,同时在现实世界的行走、上楼梯和下楼梯中检测活动和步态阶段(站立、摆动)。该算法的预期用途是控制膝关节附近的运动辅助设备。使用 80 名参与者的数据,我们最初测试和评估了两种决策树和五种长短期记忆 (LSTM) 模型,这些模型都使用了不同的特征集,使用了一种新的性能指标:完美分类步的比例 (PPCS)。基于这些初始模型的 PPCS,我们测试了另外五个事后 LSTM 模型。分别开发了用于分类的模型:(i)同时分类活动和步态阶段(一个模型预测六个状态),以及(ii)活动特定模型(三个单独的二进制分类器预测站立/摆动阶段)。性能优越的活动特定模型的准确率为 98.0%,PPCS 为 55.7%。性能优越的六阶段模型使用滤波后的惯性测量数据作为其特征,并对其预测进行中值滤波,准确率为 92.1%,PPCS 为 22.9%。从所有活动中汇集站立和摆动阶段,并将此模型视为二进制分类器,该模型的准确率为 97.1%,如果仅需检测站立和摆动步态阶段,则可能适用于现实世界的下肢外骨骼控制。关键词:机器学习,深度学习,惯性测量单元,活动识别,步态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验