Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA.
J Control Release. 2021 Jan 10;329:955-970. doi: 10.1016/j.jconrel.2020.10.026. Epub 2020 Oct 18.
Immunomodulatory therapies are limited by unavoidable side effects as well as poor solubility, stability, and pharmacokinetic properties. Nanomaterial-based drug delivery may overcome these limitations by increasing drug solubility, site-targeting, and duration of action. Here, we prepared innovative drug-integrating amphiphilic nanomaterial assemblies (DIANA) with tunable hydrophobicity, size, and morphology, and we evaluated their ability to deliver cyclosporine A (CsA) for immunomodulatory applications. We synthesized amphiphilic block copolymers made of poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) and poly(ethylene glycol)-oligo(ethylene sulfide) (PEG-OES) that can self-assemble into solid core nanomicelles (nMIC, with ≈20 nm diameter) and nanofibrils (nFIB, with ≈5 nm diameter and > 500 nm length), respectively. nMIC and nFIB displayed good CsA encapsulation efficiency (up to 4.5 and 2 mg/mL, respectively in aqueous solution), superior to many other solubilization methods, and provided sustained release (>14 and > 7 days for the nMIC and nFIB) without compromising CsA's pharmacological activity. Treatment of insulin-secreting cells with unloaded DIANAs did not impair cell viability and functionality. Both CsA-loaded DIANAs inhibited the proliferation and activation of insulin-reactive cytotoxic T cells in vitro. Subcutaneous injections of CsA-loaded DIANAs in mice provided CsA sustained release, decreasing alloantigen-induced immune responses in the draining lymph node at lower doses and reduced administration frequency than unformulated CsA. While nMIC solubilized higher amounts and provided more sustained release of CsA in vitro, nFIB enhanced cellular uptake and promoted local retention due to slower trafficking in vivo. DIANAs provide a versatile platform for a local immune suppression regimen that can be applied to allogeneic cell transplantation.
免疫调节疗法受到不可避免的副作用以及较差的溶解度、稳定性和药代动力学性质的限制。基于纳米材料的药物递送系统可以通过提高药物溶解度、靶向定位和作用持续时间来克服这些限制。在这里,我们制备了具有可调疏水性、尺寸和形态的创新药物整合两亲性纳米材料组装体(DIANA),并评估了它们递送环孢素 A(CsA)用于免疫调节应用的能力。我们合成了由聚乙二醇-聚(丙硫醚)(PEG-PPS)和聚乙二醇-聚(乙硫醚)(PEG-OES)组成的两亲性嵌段共聚物,它们可以自组装成固体核纳米胶束(nMIC,直径约为 20nm)和纳米纤维(nFIB,直径约为 5nm 且长度大于 500nm)。nMIC 和 nFIB 显示出良好的 CsA 包封效率(在水溶液中分别高达 4.5 和 2mg/mL),优于许多其他增溶方法,并提供了持续释放(nMIC 和 nFIB 分别超过 14 和 7 天),而不影响 CsA 的药理活性。未负载 DIANAs 处理胰岛素分泌细胞不会损害细胞活力和功能。两种载有 CsA 的 DIANAs 均能抑制体外胰岛素反应性细胞毒性 T 细胞的增殖和激活。CsA 负载的 DIANAs 在小鼠中的皮下注射提供了 CsA 的持续释放,以较低的剂量和减少给药频率降低了引流淋巴结中的同种抗原诱导的免疫反应,比未形成的 CsA 更好。虽然 nMIC 可增溶更多的 CsA 并提供更持续的释放,但 nFIB 由于体内较慢的转运而增强了细胞摄取并促进了局部保留。DIANAs 为局部免疫抑制方案提供了一个通用平台,可应用于同种异体细胞移植。