Suppr超能文献

介电层厚度对氮氧化硅薄层中电荷注入、积累和传输现象的影响:一项纳米尺度研究。

Influence of dielectric layer thickness on charge injection, accumulation and transport phenomena in thin silicon oxynitride layers: a nanoscale study.

作者信息

Mortreuil F, Boudou L, Makasheva K, Teyssedre G, Villeneuve-Faure C

机构信息

LAPLACE (Laboratoire Plasma et Conversion d'Energie), Université de Toulouse; CNRS UPS, INPT; 118 route de Narbonne, F-31062 Toulouse cedex 9, France.

出版信息

Nanotechnology. 2021 Feb 5;32(6):065706. doi: 10.1088/1361-6528/abc38a.

Abstract

Charge injection and retention in thin dielectric layers remain critical issues due to the great number of failure mechanisms they inflict. Achieving a better understanding and control of charge injection, trapping and transport phenomena in thin dielectric films is of high priority aiming at increasing lifetime and improving reliability of dielectric parts in electronic and electrical devices. Thermal silica is an excellent dielectric but for many of the current technological developments more flexible processes are required for synthesizing high quality dielectric materials such as amorphous silicon oxynitride layers using plasma methods. In this article, the studied dielectric layers are plasma deposited SiO N . Independently on the layer thickness, they are structurally identical: optically transparent, having the same refractive index, equal to the one of thermal silica. Influence of the dielectric film thickness on charging phenomena in such layers is investigated at nanoscale using Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy. The main effect of the dielectric film thickness variation concerns the charge flow in the layer during the charge injection step. According to the SiO N layer thickness two distinct trends of the measured surface potential and current are found, thus defining ultrathin (up to 15 nm thickness) and thin (15-150 nm thickness) layers. Nevertheless, analyses of KPFM surface potential measurements associated with results from finite element modeling of the structures show that the dielectric layer thickness has weak influence on the amount of injected charge and on the decay dynamics, meaning that pretty homogeneous layers can be processed. The charge penetration depth in such dielectric layers is evaluated to 10 nm regardless the dielectric thickness.

摘要

由于薄介电层中存在大量故障机制,电荷注入和保留仍是关键问题。为了提高电子和电气设备中介电部件的使用寿命并改善其可靠性,更好地理解和控制薄介电薄膜中的电荷注入、俘获和传输现象至关重要。热生长二氧化硅是一种优异的电介质,但对于当前的许多技术发展而言,需要更灵活的工艺来合成高质量的介电材料,例如使用等离子体方法制备非晶氮氧化硅层。在本文中,所研究的介电层是通过等离子体沉积的SiOₓNₙ。无论层厚如何,它们在结构上都是相同的:光学透明,具有相同的折射率,与热生长二氧化硅的折射率相同。使用开尔文探针力显微镜(KPFM)和导电原子力显微镜在纳米尺度上研究了介电膜厚度对这类层中充电现象的影响。介电膜厚度变化的主要影响涉及电荷注入步骤中层内的电荷流动。根据SiOₓNₙ层的厚度,发现了测量的表面电位和电流的两种不同趋势,从而定义了超薄(厚度达15 nm)和薄(厚度为15 - 150 nm)层。然而,将KPFM表面电位测量结果与结构的有限元建模结果相结合进行分析表明,介电层厚度对注入电荷量和衰减动力学的影响较弱,这意味着可以制备出相当均匀的层。无论介电层厚度如何,这类介电层中的电荷穿透深度估计为10 nm。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验