Suppr超能文献

学习在具有挑战性的地形上进行四足运动。

Learning quadrupedal locomotion over challenging terrain.

机构信息

Robotic Systems Lab, ETH-Zürich, Zürich, Switzerland.

Robotics & Artificial Intelligence Lab, KAIST, Deajeon, Korea.

出版信息

Sci Robot. 2020 Oct 21;5(47). doi: 10.1126/scirobotics.abc5986.

Abstract

Legged locomotion can extend the operational domain of robots to some of the most challenging environments on Earth. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have increased in complexity but fallen short of the generality and robustness of animal locomotion. Here, we present a robust controller for blind quadrupedal locomotion in challenging natural environments. Our approach incorporates proprioceptive feedback in locomotion control and demonstrates zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. The controller is driven by a neural network policy that acts on a stream of proprioceptive signals. The controller retains its robustness under conditions that were never encountered during training: deformable terrains such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work indicates that robust locomotion in natural environments can be achieved by training in simple domains.

摘要

腿式运动可以将机器人的作业范围扩展到地球上一些极具挑战性的环境中。然而,传统的腿式运动控制器是基于精心设计的状态机,这些状态机明确触发运动基元和反射的执行。这些设计的复杂性有所增加,但仍未能达到动物运动的通用性和鲁棒性。在这里,我们提出了一种用于在具有挑战性的自然环境中进行盲目四足运动的稳健控制器。我们的方法将本体感受反馈纳入运动控制中,并展示了从模拟到自然环境的零样本泛化能力。该控制器通过强化学习在模拟中进行训练。控制器由一个神经网络策略驱动,该策略作用于本体感受信号流。控制器在训练过程中从未遇到过的情况下保持其稳健性:可变形的地形,如泥和雪;动态立足点,如瓦砾;以及地面障碍物,如茂密的植被和喷涌的水。所提出的工作表明,通过在简单的领域进行训练,可以实现自然环境中的稳健运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验