Duschek L, Kükelhan P, Beyer A, Firoozabadi S, Oelerich J O, Fuchs C, Stolz W, Ballabio A, Isella G, Volz K
Materials Science Center and Faculty of Physics, Philipps-Universität Marburg, Hans-Meerweinstraße 6, Marburg, Germany.
Materials Science Center and Faculty of Physics, Philipps-Universität Marburg, Hans-Meerweinstraße 6, Marburg, Germany.
Ultramicroscopy. 2019 May;200:84-96. doi: 10.1016/j.ultramic.2019.02.009. Epub 2019 Feb 13.
This paper presents a comprehensive investigation of an extended method to determine composition of materials by scanning transmission electron microscopy (STEM) high angle annular darkfield (HAADF) images and using complementary multislice simulations. The main point is to understand the theoretical capabilities of the algorithm and address the intrinsic limitations of using STEM HAADF intensities for composition determination. A special focus is the potential of the method regarding single-atom accuracy. All-important experimental parameters are included into the multislice simulations to ensure the best possible fit between simulation and experiment. To demonstrate the capabilities of the extended method, results for three different technical important semiconductor samples are presented. Overall the method shows a high lateral resolution combined with a high accuracy towards single-atom accuracy.
本文介绍了一种扩展方法的全面研究,该方法通过扫描透射电子显微镜(STEM)高角度环形暗场(HAADF)图像并使用互补的多切片模拟来确定材料的成分。重点是了解该算法的理论能力,并解决使用STEM HAADF强度进行成分测定的内在局限性。特别关注的是该方法在单原子精度方面的潜力。将所有重要的实验参数纳入多切片模拟,以确保模拟与实验之间的最佳拟合。为了证明扩展方法的能力,展示了三种不同技术重要性的半导体样品的结果。总体而言,该方法具有高横向分辨率和接近单原子精度的高精度。