Suppr超能文献

原子层沉积的TiO纳米层在硅太阳能电池中作为高效的空穴选择性钝化接触层发挥作用。

Atomic-Layer-Deposited TiO Nanolayers Function as Efficient Hole-Selective Passivating Contacts in Silicon Solar Cells.

作者信息

Matsui Takuya, Bivour Martin, Hermle Martin, Sai Hitoshi

机构信息

Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

Division Photovoltaics, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, Freiburg 79110, Germany.

出版信息

ACS Appl Mater Interfaces. 2020 Nov 4;12(44):49777-49785. doi: 10.1021/acsami.0c14239. Epub 2020 Oct 22.

Abstract

Titanium oxide (TiO) has recently emerged as an electron-selective passivating contact for solar cell and semiconductor device applications. The mechanism behind this function has been attributed to the lower energy barrier for electrons than holes at the TiO/semiconductor interface. Here we report an antithetic function of TiO nanolayers (∼5 nm), which were grown by atomic layer deposition (ALD) on either planar or textured crystalline silicon (Si) without a buffer layer, acting as efficient -selective contacts with excellent surface passivation. We demonstrate the proof-of-concept solar cells with power conversion efficiencies above 20% with both - and -Si absorbers. We show that the elemental composition in the TiO/Si interfacial layers (TiOSi:H and SiO:H), which can be manipulated by the ALD process and the post-treatments such as exposure to atomic hydrogen and supply of oxygen during annealing, is a key in the efficient hole extraction and surface passivation. This new hole-selective passivating contact opens opportunities for replacing the widely used heterocontacts and dielectric-passivation layers in various device applications.

摘要

氧化钛(TiO)最近作为一种用于太阳能电池和半导体器件应用的电子选择性钝化接触材料而出现。这种功能背后的机制被认为是在TiO/半导体界面处,电子的能垒低于空穴的能垒。在此,我们报道了通过原子层沉积(ALD)在无缓冲层的平面或织构化晶体硅(Si)上生长的约5纳米厚的TiO纳米层的相反功能,其作为具有优异表面钝化的高效空穴选择性接触。我们展示了使用p型和n型硅吸收体、功率转换效率超过20%的概念验证太阳能电池。我们表明,TiO/Si界面层中的元素组成(TiOSi:H和SiO:H)可通过ALD工艺以及诸如在退火期间暴露于原子氢和供应氧气等后处理来调控,这是高效空穴提取和表面钝化的关键。这种新型空穴选择性钝化接触为在各种器件应用中替代广泛使用的异质接触和介电钝化层提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验