Suppr超能文献

利用贝叶斯优化软件进行原子层沉积:TiO层的单目标优化

Leveraging Bayesian Optimization Software for Atomic Layer Deposition: Single-Objective Optimization of TiO Layers.

作者信息

Häussermann Philipp, Joseph Nikhil Biju, Hiller Daniel

机构信息

Institute of Applied Physics (IAP), Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.

Institute of Experimental Physics (IEP), Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.

出版信息

Materials (Basel). 2024 Oct 14;17(20):5019. doi: 10.3390/ma17205019.

Abstract

We demonstrate the application of free-to-use and easy-to-implement Bayesian optimization (BO) software to streamline atomic layer deposition (ALD) process optimization. By employing machine learning-based Bayesian optimization algorithms, we enhanced the silicon surface passivation quality of titanium dioxide layers deposited using titanium tetraisopropoxide (TTIP). Unlike classical designs of experimental methods, such as Box-Behnken or Plackett-Burman designs, which require a predefined set of experiments and can become resource intensive, BO offers several advantages. It dynamically updates the search strategy based on previous outcomes, allowing for efficient exploration of parameter spaces with fewer experimental runs. This adaptive approach is particularly advantageous in small-scale experiments or laboratories where time, resources, and materials are limited. In a single-objective optimization experiment, we identified constrained search spaces that limited further optimization, underscoring the importance of properly defined parameter bounds prior to the optimization process. Our findings highlight that Bayesian optimization can not only reduce time and resource costs associated with ALD process optimization but also support faster discovery of more optimal ALD process parameters, even with minimal prior knowledge of the deposition process or precursor chemistry.

摘要

我们展示了免费且易于实施的贝叶斯优化(BO)软件在简化原子层沉积(ALD)工艺优化中的应用。通过采用基于机器学习的贝叶斯优化算法,我们提高了使用四异丙醇钛(TTIP)沉积的二氧化钛层的硅表面钝化质量。与经典的实验设计方法(如Box-Behnken或Plackett-Burman设计)不同,后者需要预先设定一组实验且可能耗费大量资源,BO具有多个优点。它根据先前的结果动态更新搜索策略,从而能够通过较少的实验运行高效地探索参数空间。这种自适应方法在时间、资源和材料有限的小规模实验或实验室中尤为有利。在单目标优化实验中,我们确定了限制进一步优化的约束搜索空间,强调了在优化过程之前正确定义参数界限的重要性。我们的研究结果表明,贝叶斯优化不仅可以降低与ALD工艺优化相关的时间和资源成本,还能支持更快地发现更优 的ALD工艺参数,即使对沉积过程或前驱体化学的先验知识很少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19f/11509461/1700791dce56/materials-17-05019-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验