Suppr超能文献

本地化数据共享基础设施 e!DAL:促进 FAIR 数据以加快数据获取。

The on-premise data sharing infrastructure e!DAL: Foster FAIR data for faster data acquisition.

机构信息

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany.

出版信息

Gigascience. 2020 Oct 22;9(10). doi: 10.1093/gigascience/giaa107.

Abstract

BACKGROUND

The FAIR data principle as a commitment to support long-term research data management is widely accepted in the scientific community. Although the ELIXIR Core Data Resources and other established infrastructures provide comprehensive and long-term stable services and platforms for FAIR data management, a large quantity of research data is still hidden or at risk of getting lost. Currently, high-throughput plant genomics and phenomics technologies are producing research data in abundance, the storage of which is not covered by established core databases. This concerns the data volume, e.g., time series of images or high-resolution hyper-spectral data; the quality of data formatting and annotation, e.g., with regard to structure and annotation specifications of core databases; uncovered data domains; or organizational constraints prohibiting primary data storage outside institional boundaries.

RESULTS

To share these potentially dark data in a FAIR way and master these challenges the ELIXIR Germany/de.NBI service Plant Genomic and Phenomics Research Data Repository (PGP) implements a "bring the infrastructure to the data" approach, which allows research data to be kept in place and wrapped in a FAIR-aware software infrastructure. This article presents new features of the e!DAL infrastructure software and the PGP repository as a best practice on how to easily set up FAIR-compliant and intuitive research data services. Furthermore, the integration of the ELIXIR Authentication and Authorization Infrastructure (AAI) and data discovery services are introduced as means to lower technical barriers and to increase the visibility of research data.

CONCLUSION

The e!DAL software matured to a powerful and FAIR-compliant infrastructure, while keeping the focus on flexible setup and integration into existing infrastructures and into the daily research process.

摘要

背景

作为支持长期研究数据管理的承诺,FAIR 数据原则在科学界得到广泛认可。尽管 ELIXIR 核心数据资源和其他已建立的基础设施为 FAIR 数据管理提供了全面和长期稳定的服务和平台,但仍有大量研究数据被隐藏或面临丢失的风险。目前,高通量植物基因组学和表型组学技术正在产生大量研究数据,而这些数据的存储并不属于已建立的核心数据库的范畴。这涉及到数据量,例如,图像的时间序列或高分辨率超光谱数据;数据格式化和注释的质量,例如,核心数据库的结构和注释规范;未涵盖的数据领域;或组织限制禁止在机构边界之外存储原始数据。

结果

为了以 FAIR 的方式共享这些潜在的暗数据并应对这些挑战,ELIXIR 德国/德国国家生物信息学基础设施(de.NBI)服务植物基因组学和表型组学研究数据存储库(PGP)实施了“将基础设施带到数据所在地”的方法,该方法允许将研究数据保留在原处,并包装在一个 FAIR 感知的软件基础设施中。本文介绍了 e!DAL 基础设施软件和 PGP 存储库的新功能,展示了如何轻松设置符合 FAIR 标准且直观的研究数据服务的最佳实践。此外,还介绍了 ELIXIR 身份验证和授权基础设施(AAI)和数据发现服务的集成,作为降低技术障碍和提高研究数据可见性的手段。

结论

e!DAL 软件已经成熟为一个强大且符合 FAIR 标准的基础设施,同时保持了灵活的设置和集成到现有基础设施以及日常研究过程中的重点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3b6/7580168/459af8d83d4d/giaa107fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验