Suppr超能文献

聚合多种呼吸道病原体的预测结果有助于更准确地预测流感样疾病。

Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness.

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America.

出版信息

PLoS Comput Biol. 2020 Oct 22;16(10):e1008301. doi: 10.1371/journal.pcbi.1008301. eCollection 2020 Oct.

Abstract

Influenza-like illness (ILI) is a commonly measured syndromic signal representative of a range of acute respiratory infections. Reliable forecasts of ILI can support better preparation for patient surges in healthcare systems. Although ILI is an amalgamation of multiple pathogens with variable seasonal phasing and attack rates, most existing process-based forecasting systems treat ILI as a single infectious agent. Here, using ILI records and virologic surveillance data, we show that ILI signal can be disaggregated into distinct viral components. We generate separate predictions for six contributing pathogens (influenza A/H1, A/H3, B, respiratory syncytial virus, and human parainfluenza virus types 1-2 and 3), and develop a method to forecast ILI by aggregating these predictions. The relative contribution of each pathogen to the total ILI signal is estimated using a Markov Chain Monte Carlo (MCMC) method upon forecast aggregation. We find highly variable overall contributions from influenza type A viruses across seasons, but relatively stable contributions for the other pathogens. Using historical data from 1997 to 2014 at US national and regional levels, the proposed forecasting system generates improved predictions of both seasonal and near-term targets relative to a baseline method that simulates ILI as a single pathogen. The hierarchical forecasting system can generate predictions for each viral component, as well as infer and predict their contributions to ILI, which may additionally help physicians determine the etiological causes of ILI in clinical settings.

摘要

流感样疾病(ILI)是一种常用的综合征指标,代表了一系列急性呼吸道感染。ILI 的可靠预测可以帮助医疗保健系统更好地为患者激增做好准备。尽管 ILI 是多种病原体的混合体,具有不同的季节性和攻击率,但大多数现有的基于过程的预测系统将 ILI 视为单一的传染病原体。在这里,我们使用 ILI 记录和病毒学监测数据,表明 ILI 信号可以分解为不同的病毒成分。我们为六个致病病原体(流感 A/H1、A/H3、B、呼吸道合胞病毒以及人副流感病毒 1-2 和 3)分别生成预测,并开发了一种通过聚合这些预测来预测 ILI 的方法。使用聚合预测时,使用马尔可夫链蒙特卡罗(MCMC)方法估计每个病原体对总 ILI 信号的相对贡献。我们发现流感 A 型病毒在整个季节的总体贡献变化很大,但其他病原体的贡献相对稳定。使用 1997 年至 2014 年美国国家和地区的历史数据,与模拟 ILI 为单一病原体的基线方法相比,所提出的预测系统可以提高对季节性和近期目标的预测。分层预测系统可以为每个病毒成分生成预测,并推断和预测它们对 ILI 的贡献,这可能有助于医生在临床环境中确定 ILI 的病因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f10b/7608986/87c06806a9ff/pcbi.1008301.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验