University of Auckland, 20 Symonds Street, Auckland, 1010, New Zealand.
Australian National University, 131 Garran Rd, Acton, Canberra ACT, 2601, Australia.
BMC Med Inform Decis Mak. 2024 Oct 9;24(1):293. doi: 10.1186/s12911-024-02702-0.
Forecasting models predicting trends in hospitalization rates have the potential to inform hospital management during seasonal epidemics of respiratory diseases and the associated surges caused by acute hospital admissions. Hospital bed requirements for elective surgery could be better planned if it were possible to foresee upcoming peaks in severe respiratory illness admissions. Forecasting models can also guide the use of intervention strategies to decrease the spread of respiratory pathogens and thus prevent local health system overload. In this study, we explore the capability of forecasting models to predict the number of hospital admissions in Auckland, New Zealand, within a three-week time horizon. Furthermore, we evaluate probabilistic forecasts and the impact on model performance when integrating laboratory data describing the circulation of respiratory viruses.
The dataset used for this exploration results from active hospital surveillance, in which the World Health Organization Severe Acute Respiratory Infection (SARI) case definition was consistently used. This research nurse-led surveillance has been implemented in two public hospitals in Auckland and provides a systematic laboratory testing of SARI patients for nine respiratory viruses, including influenza, respiratory syncytial virus, and rhinovirus. The forecasting strategies used comprise automatic machine learning, one of the most recent generative pre-trained transformers, and established artificial neural network algorithms capable of univariate and multivariate forecasting.
We found that machine learning models compute more accurate forecasts in comparison to naïve seasonal models. Furthermore, we analyzed the impact of reducing the temporal resolution of forecasts, which decreased the model error of point forecasts and made probabilistic forecasting more reliable. An additional analysis that used the laboratory data revealed strong season-to-season variations in the incidence of respiratory viruses and how this correlates with total hospitalization cases. These variations could explain why it was not possible to improve forecasts by integrating this data.
Active SARI surveillance and consistent data collection over time enable these data to be used to predict hospital bed utilization. These findings show the potential of machine learning as support for informing systems for proactive hospital management.
预测住院率趋势的模型有可能在呼吸道疾病季节性流行期间为医院管理提供信息,并应对由此导致的急性住院人数激增。如果能够预见严重呼吸道疾病入院人数即将出现高峰,那么可以更好地规划择期手术所需的病床。预测模型还可以指导干预策略的使用,以减少呼吸道病原体的传播,从而防止当地卫生系统过载。在这项研究中,我们探索了预测模型在奥克兰(新西兰)的医院住院人数的预测能力,预测时间跨度为三周。此外,我们还评估了概率预测,并在整合描述呼吸道病毒传播的实验室数据时,评估了对模型性能的影响。
本研究使用的数据集来源于主动医院监测,其中始终使用世界卫生组织严重急性呼吸道感染(SARI)病例定义。这项由研究护士主导的监测在奥克兰的两家公立医院实施,对 SARI 患者进行了系统的实验室检测,检测了包括流感、呼吸道合胞病毒和鼻病毒在内的 9 种呼吸道病毒。所使用的预测策略包括自动机器学习、最先进的生成式预训练转换器之一,以及能够进行单变量和多变量预测的传统人工神经网络算法。
我们发现,与简单季节性模型相比,机器学习模型的预测更为准确。此外,我们分析了降低预测时间分辨率的影响,这降低了点预测的模型误差,并使概率预测更加可靠。进一步的分析使用了实验室数据,结果表明呼吸道病毒的发病率存在明显的季节性变化,以及这种变化与总住院病例之间的相关性。这些变化可能解释了为什么整合这些数据并不能改善预测的原因。
SARI 的主动监测和随时间推移的一致数据收集使这些数据能够用于预测医院床位利用情况。这些发现显示了机器学习作为支持主动医院管理系统信息的潜力。