Department of Information Technology, Hazara University, Mansehra, Pakistan.
Department of Computer Science, Abbottabad University of Science and Technology, Abbottabad, Pakistan.
PLoS One. 2020 Oct 22;15(10):e0240015. doi: 10.1371/journal.pone.0240015. eCollection 2020.
Color-based image segmentation classifies pixels of digital images in numerous groups for further analysis in computer vision, pattern recognition, image understanding, and image processing applications. Various algorithms have been developed for image segmentation, but clustering algorithms play an important role in the segmentation of digital images. This paper presents a novel and adaptive initialization approach to determine the number of clusters and find the initial central points of clusters for the standard K-means algorithm to solve the segmentation problem of color images. The presented scheme uses a scanning procedure of the paired Red, Green, and Blue (RGB) color-channel histograms for determining the most salient modes in every histogram. Next, the histogram thresholding is applied and a search in every histogram mode is performed to accomplish RGB pairs. These RGB pairs are used as the initial cluster centers and cluster numbers that clustered each pixel into the appropriate region for generating the homogeneous regions. The proposed technique determines the best initialization parameters for the conventional K-means clustering technique. In this paper, the proposed approach was compared with various unsupervised image segmentation techniques on various image segmentation benchmarks. Furthermore, we made use of a ranking approach inspired by the Evaluation Based on Distance from Average Solution (EDAS) method to account for segmentation integrity. The experimental results show that the proposed technique outperforms the other existing clustering techniques by optimizing the segmentation quality and possibly reducing the classification error.
基于颜色的图像分割将数字图像的像素分类为许多组,以便在计算机视觉、模式识别、图像理解和图像处理应用中进行进一步分析。已经开发了各种用于图像分割的算法,但聚类算法在数字图像的分割中起着重要的作用。本文提出了一种新颖的自适应初始化方法,用于确定聚类的数量,并为标准 K-均值算法找到聚类的初始中心点,以解决彩色图像的分割问题。所提出的方案使用 RGB 颜色通道直方图的扫描过程来确定每个直方图中的最显著模式。然后,应用直方图阈值,并在每个直方图模式中执行搜索以完成 RGB 对。这些 RGB 对用作初始聚类中心和聚类数量,将每个像素聚类到适当的区域,以生成均匀的区域。该方法为传统的 K-均值聚类技术确定了最佳初始化参数。在本文中,将所提出的方法与各种无监督图像分割技术在各种图像分割基准上进行了比较。此外,我们利用了一种受基于平均解距离的评估(EDAS)方法启发的排名方法,以考虑分割的完整性。实验结果表明,所提出的方法通过优化分割质量并可能减少分类误差,优于其他现有的聚类技术。