Suppr超能文献

基于轮廓和基于区域的图像分割相结合。

Combining contour-based and region-based in image segmentation.

机构信息

Computer Engineering Department, University of Balamand, Balamand, North Governorate, Lebanon.

出版信息

F1000Res. 2024 Apr 2;12:1312. doi: 10.12688/f1000research.140872.3. eCollection 2023.

Abstract

BACKGROUND

This paper presents an optimized clustering approach applied to image segmentation. Accurate image segmentation impacts many fields like medical, machine vision, object detection. Applications involve tumor detection, face detection and recognition, and video surveillance.

METHODS

The developed approach is based on obtaining an optimum number of clusters and regions of an image. We combined Region-based and contour-based approaches. Initial rough regions are obtained using edge detection. We have used Gabor wavelets for texture classification and spatial resolutions. Color frequencies are also used to determine the number of clusters of the Fuzzy c-means (FCM) algorithm which gave an optimum number of clusters or regions.

RESULTS

We have compared our approach with other similar wavelet and clustering techniques. Our algorithm gave better values for segmentation metrics like SNR, PSNR, and MCC.

CONCLUSIONS

Optimizing the number of clusters or regions has a significant effect on the performance of the image segmentation techniques. This will result in better detection and localization of the segmentation-based application.

摘要

背景

本文提出了一种应用于图像分割的优化聚类方法。准确的图像分割影响着许多领域,如医学、机器视觉、目标检测。应用包括肿瘤检测、面部检测和识别、视频监控。

方法

所开发的方法基于获得图像的最佳聚类数和区域数。我们结合了基于区域和基于轮廓的方法。使用边缘检测获得初始粗糙区域。我们使用了 Gabor 小波进行纹理分类和空间分辨率。还使用颜色频率来确定 Fuzzy c-means(FCM)算法的聚类数,该算法给出了最佳聚类数或区域数。

结果

我们将我们的方法与其他类似的小波和聚类技术进行了比较。我们的算法在 SNR、PSNR 和 MCC 等分割指标上给出了更好的值。

结论

优化聚类数或区域数对图像分割技术的性能有显著影响。这将导致基于分割的应用程序的更好的检测和定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d803/11325177/53505623a080/f1000research-12-164179-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验