Suppr超能文献

使用相关噪声模型改进实时位置估计

Improving Real-Time Position Estimation Using Correlated Noise Models.

作者信息

Martin Andrew, Parry Matthew, Soundy Andy W R, Panckhurst Bradley J, Brown Phillip, Molteno Timothy C A, Schumayer Daniel

机构信息

Department of Physics, University of Otago, 730 Cumberland St, Dunedin 9016, New Zealand.

Department of Mathematics and Statistics, University of Otago, 730 Cumberland St, Dunedin 9016, New Zealand.

出版信息

Sensors (Basel). 2020 Oct 20;20(20):5913. doi: 10.3390/s20205913.

Abstract

We provide algorithms for inferring GPS (Global Positioning System) location and for quantifying the uncertainty of this estimate in real time. The algorithms are tested on GPS data from locations in the Southern Hemisphere at four significantly different latitudes. In order to rank the algorithms, we use the so-called log-score rule. The best algorithm uses an Ornstein-Uhlenbeck (OU) noise model and is built on an enhanced Kalman Filter (KF). The noise model is capable of capturing the observed autocorrelated process noise in the altitude, latitude and longitude recordings. This model outperforms a KF that assumes a Gaussian noise model, which under-reports the position uncertainties. We also found that the dilution-of-precision parameters, automatically reported by the GPS receiver at no additional cost, do not help significantly in the uncertainty quantification of the GPS positioning. A non-learning method using the actual position measurements and employing a constant uncertainty does not even converge to the correct position. Inference with the enhanced noise model is suitable for embedded computing and capable of achieving real-time position inference, can quantify uncertainty and be extended to incorporate complementary sensor recordings, e.g., from an accelerometer or from a magnetometer, in order to improve accuracy. The algorithm corresponding to the augmented-state unscented KF method suggests a computational cost of O(dx2dt), where dx is the dimension of the augmented state-vector and dt is an adjustable, design-dependent parameter corresponding to the length of "past values" one wishes to keep for re-evaluation of the model from time to time. The provided algorithm assumes dt=1. Hence, the algorithm is likely to be suitable for sensor fusion applications.

摘要

我们提供了用于实时推断全球定位系统(GPS)位置并量化该估计值不确定性的算法。这些算法在来自南半球四个显著不同纬度位置的GPS数据上进行了测试。为了对算法进行排名,我们使用了所谓的对数评分规则。最佳算法使用奥恩斯坦 - 乌伦贝克(OU)噪声模型,并基于增强卡尔曼滤波器(KF)构建。该噪声模型能够捕捉海拔、纬度和经度记录中观测到的自相关过程噪声。此模型优于假设高斯噪声模型的卡尔曼滤波器,后者低估了位置不确定性。我们还发现,GPS接收器免费自动报告的精度稀释参数,在GPS定位的不确定性量化方面并无显著帮助。一种使用实际位置测量并采用恒定不确定性的非学习方法甚至无法收敛到正确位置。使用增强噪声模型进行推断适用于嵌入式计算,能够实现实时位置推断,可以量化不确定性,并且可以扩展以纳入互补传感器记录,例如来自加速度计或磁力计的记录,以提高准确性。与增广状态无迹卡尔曼滤波器方法对应的算法表明计算成本为O(dx2dt),其中dx是增广状态向量的维度,dt是一个与设计相关的可调参数,对应于希望不时保留用于重新评估模型的“过去值”的长度。所提供的算法假设dt = 1。因此,该算法可能适用于传感器融合应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26c2/7594086/bde41b7ac5b9/sensors-20-05913-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验