Soundy Andy W R, Panckhurst Bradley J, Brown Phillip, Martin Andrew, Molteno Timothy C A, Schumayer Daniel
Department of Physics, University of Otago, 730 Cumberland St, Dunedin 9016, New Zealand.
Sensors (Basel). 2020 Oct 24;20(21):6050. doi: 10.3390/s20216050.
We recorded the time series of location data from stationary, single-frequency (L1) GPS positioning systems at a variety of geographic locations. The empirical autocorrelation function of these data shows significant temporal correlations. The Gaussian white noise model, widely used in sensor-fusion algorithms, does not account for the observed autocorrelations and has an artificially large variance. Noise-model analysis-using Akaike's Information Criterion-favours alternative models, such as an Ornstein-Uhlenbeck or an autoregressive process. We suggest that incorporating a suitable enhanced noise model into applications (e.g., Kalman Filters) that rely on GPS position estimates will improve performance. This provides an alternative to explicitly modelling possible sources of correlation (e.g., multipath, shadowing, or other second-order physical phenomena).
我们记录了来自不同地理位置的固定单频(L1)全球定位系统(GPS)的位置数据时间序列。这些数据的经验自相关函数显示出显著的时间相关性。广泛应用于传感器融合算法的高斯白噪声模型无法解释观测到的自相关性,且方差人为地偏大。使用赤池信息准则进行的噪声模型分析更倾向于诸如奥恩斯坦-乌伦贝克过程或自回归过程等替代模型。我们建议,将合适的增强噪声模型纳入依赖GPS位置估计的应用(如卡尔曼滤波器)中,将提高性能。这为明确建模可能的相关源(如多径、阴影或其他二阶物理现象)提供了一种替代方法。