Suppr超能文献

用于可植入生物电子学的磁电体:最新进展。

Magnetoelectrics for Implantable Bioelectronics: Progress to Date.

机构信息

Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, Texas 77005, United States.

Department of Bioengineering, Rice University, 6100 Main St, Houston, Texas 77005, United States.

出版信息

Acc Chem Res. 2024 Oct 15;57(20):2953-2962. doi: 10.1021/acs.accounts.4c00307. Epub 2024 Oct 4.

Abstract

ConspectusThe coupling of magnetic and electric properties manifested in magnetoelectric (ME) materials has unlocked numerous possibilities for advancing technologies like energy harvesting, memory devices, and medical technologies. Due to this unique coupling, the magnetic properties of these materials can be tuned by an electric field; conversely, their electric polarization can be manipulated through a magnetic field.Over the past seven years, our lab work has focused on leveraging these materials to engineer implantable bioelectronics for various neuromodulation applications. One of the main challenges for bioelectronics is to design miniaturized solutions that can be delivered with minimally invasive procedures and yet can receive sufficient power to directly stimulate tissue or power electronics to perform functions like communication and sensing.Magnetoelectric coupling in ME materials is strongest when the driving field matches a mechanical resonant mode. However, miniaturized ME transducers typically have resonance frequencies >100 kHz, which is too high for direct neuromodulation as neurons only respond to low frequencies (typically <1 kHz). We discuss two approaches that have been proposed to overcome this frequency mismatch: operating off-resonance and rectification. The off-resonance approach is most common for magnetoelectric nanoparticles (MENPs) that typically have resonance frequencies in the gigahertz range. In vivo experiments on rat models have shown that MENPs could induce changes in neural activity upon excitation with <200 Hz magnetic fields. However, the neural response has latencies of several seconds due to the weak coupling in the off-resonance regime.To stimulate neural responses with millisecond precision, we developed methods to rectify the ME response so that we could drive the materials at their resonant frequency but still produce the slowly varying voltages needed for direct neural stimulation. The first version of the stimulator combined a ME transducer and analog electronics for rectification. To create even smaller solutions, we introduced the first magnetoelectric metamaterial (MNM) that exhibits self-rectification. Both designs have effectively induced neural modulation in rat models with less than 5 ms latency.Based on our experience with in vivo testing of the rectified ME stimulators, we found it challenging to deliver the precisely controlled therapy required for clinical applications, given the ME transducer's sensitivity to the external transmitter alignment. To overcome this challenge, we developed the ME-BIT (MagnetoElectric BioImplanT), a digitally programmable stimulator that receives wireless power and data through the ME link.We further expanded the utility of this technology to neuromodulation applications that require high stimulation thresholds by introducing the DOT (Digitally programmable Overbrain Therapeutic). The DOT has voltage compliance up to 14.5 V. We have demonstrated the efficacy of these designs through various in vivo studies for applications like peripheral nerve stimulation and epidural cortical stimulation.To further improve these systems to be adaptive and enable a network of coordinated devices, we developed a bidirectional communication system to transmit data to and from the implant. To enable even greater miniaturization, we developed a way to use the same ME transducer for wireless power and data communication by developing the first ME backscatter communication protocol.

摘要

概述

磁电(ME)材料中表现出的磁电性能的结合,为推进能源收集、存储设备和医疗技术等领域的技术发展提供了无数可能。由于这种独特的耦合,这些材料的磁性能可以通过电场进行调节;相反,它们的电极化可以通过磁场来操纵。

在过去的七年里,我们的实验室工作重点是利用这些材料为各种神经调节应用设计可植入的生物电子设备。生物电子学的主要挑战之一是设计可以通过微创手术输送的小型化解决方案,同时可以接收足够的功率来直接刺激组织或为电子设备供电,以实现通信和传感等功能。

ME 材料中的磁电耦合在驱动场与机械共振模式匹配时最强。然而,小型化的 ME 换能器通常具有 >100 kHz 的谐振频率,这对于直接神经调节来说太高了,因为神经元只对低频(通常 <1 kHz)做出反应。我们讨论了两种已经提出的克服这种频率失配的方法:离谐操作和整流。离谐方法对于通常具有千兆赫范围内谐振频率的磁电纳米颗粒(MENP)最为常见。在大鼠模型的体内实验表明,当用 <200 Hz 的磁场激励时,MENP 可以诱导神经活动发生变化。然而,由于离谐状态下的弱耦合,神经反应的潜伏期为数秒。

为了以毫秒级的精度刺激神经反应,我们开发了一种整流 ME 响应的方法,以便我们可以在材料的谐振频率下驱动它们,但仍能产生用于直接神经刺激的缓慢变化的电压。第一种刺激器结合了 ME 换能器和用于整流的模拟电子设备。为了创建更小的解决方案,我们引入了第一个表现出自整流的磁电超材料 (MNM)。这两种设计都有效地在大鼠模型中诱导了神经调制,潜伏期小于 5 ms。

基于我们对体内整流 ME 刺激器测试的经验,我们发现由于 ME 换能器对外置发射器对准的敏感性,很难提供临床应用所需的精确控制的治疗。为了克服这一挑战,我们开发了 ME-BIT(磁电生物植入物),这是一种通过 ME 链路接收无线功率和数据的数字可编程刺激器。

为了通过引入 DOT(数字可编程的颅上治疗)来提高这些技术在需要高刺激阈值的神经调节应用中的实用性,我们进一步扩展了该技术的实用性。DOT 的电压容限高达 14.5 V。我们已经通过各种体内研究证明了这些设计的有效性,用于外周神经刺激和硬膜外皮质刺激等应用。

为了进一步改进这些系统以实现自适应并启用协调设备的网络,我们开发了一种双向通信系统,以便向植入物发送和接收数据。为了实现更大的小型化,我们开发了一种使用相同 ME 换能器进行无线功率和数据通信的方法,通过开发第一个 ME 反向散射通信协议来实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea31/11483720/fb714c59a979/ar4c00307_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验