The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
Sci Rep. 2020 Oct 22;10(1):18045. doi: 10.1038/s41598-020-73755-0.
Implementation of gene editing technologies such as CRISPR/Cas9 in the manufacture of novel cell-based therapeutics has the potential to enable highly-targeted, stable, and persistent genome modifications without the use of viral vectors. Electroporation has emerged as a preferred method for delivering gene-editing machinery to target cells, but a major challenge remaining is that most commercial electroporation machines are built for research and process development rather than for large-scale, automated cellular therapy manufacturing. Here we present a microfluidic continuous-flow electrotransfection device designed for precise, consistent, and high-throughput genetic modification of target cells in cellular therapy manufacturing applications. We optimized our device for delivery of mRNA into primary human T cells and demonstrated up to 95% transfection efficiency with minimum impact on cell viability and expansion potential. We additionally demonstrated processing of samples comprising up to 500 million T cells at a rate of 20 million cells/min. We anticipate that our device will help to streamline the production of autologous therapies requiring on the order of 10[Formula: see text]-10[Formula: see text] cells, and that it is well-suited to scale for production of trillions of cells to support emerging allogeneic therapies.
基因编辑技术(如 CRISPR/Cas9)在新型细胞治疗产品的制造中的应用具有实现高度靶向、稳定和持久的基因组修饰的潜力,而无需使用病毒载体。电穿孔已成为将基因编辑机制递送至靶细胞的首选方法,但仍然存在一个主要挑战,即大多数商业电穿孔仪器是为研究和工艺开发而不是为大规模、自动化的细胞治疗制造而构建的。在这里,我们提出了一种用于细胞治疗制造应用中精确、一致和高通量遗传修饰靶细胞的微流控连续流电转染装置。我们针对将 mRNA 递送至原代人 T 细胞进行了优化,并证明了高达 95%的转染效率,对细胞活力和扩增潜力的影响最小。我们还证明了可以以 2000 万细胞/分钟的速度处理包含多达 5 亿个 T 细胞的样品。我们预计,我们的设备将有助于简化需要 10[Formula: see text]-10[Formula: see text]个细胞的自体治疗的生产,并且非常适合扩展生产以支持新兴的同种异体治疗所需的数万亿个细胞。