Suppr超能文献

细胞内纳米材料输送 螺旋水孔法。

Intracellular Nanomaterial Delivery Spiral Hydroporation.

机构信息

Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea.

Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan.

出版信息

ACS Nano. 2020 Mar 24;14(3):3048-3058. doi: 10.1021/acsnano.9b07930. Epub 2020 Feb 18.

Abstract

In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2-55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 × 10 cells/min) and rapid delivery (∼1 min) while maintaining high levels of cell viability (up to 94%).

摘要

在最近的纳米生物技术发展中,已经创造了各种各样的功能纳米材料和工程生物分子,这些在细胞生物学中有许多应用。为了使这些纳米材料完全发挥它们的潜力,它们必须能够在亚细胞水平上并具有高度的特异性到达它们的生物靶标。传统上,纳米载体或膜破坏方法已被用于将纳米材料递送到细胞内;然而,由于这些方法的毒性、不一致的递药和低通量,它们并不是最优的,而且它们还需要大量的劳动和时间,这突出了开发下一代细胞内递药系统的必要性。本研究报告了一种基于在中等雷诺数下的交叉和 T 型结处的螺旋涡旋和涡旋破裂的意想不到的细胞变形现象的细胞内纳米材料递药平台的开发。这些涡旋诱导的细胞变形和连续的恢复过程会使细胞膜短暂打开,允许纳米材料在单个步骤中有效地和稳健地递送到细胞内,而无需载体或外部设备的帮助。通过使用这里描述的平台(称为螺旋水力压裂器),我们演示了不同纳米材料的递药,包括金纳米颗粒(200nm 直径)、功能介孔硅纳米颗粒(150nm 直径)、葡聚糖(水动力直径在 2-55nm 之间)和 mRNA,递送到不同的细胞类型。我们在这里证明,该系统具有高效率(高达 96.5%)、高通量(高达 1×10^5 个细胞/分钟)和快速递药(约 1 分钟),同时保持高细胞活力(高达 94%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验