Suppr超能文献

I 型 CRISPR-Cas 系统的可重复抗原识别。

Reproducible Antigen Recognition by the Type I-F CRISPR-Cas System.

机构信息

Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA; Russian Academy of Sciences, Moscow, Russia.

Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Russian Academy of Sciences, Moscow, Russia.

出版信息

CRISPR J. 2020 Oct;3(5):378-387. doi: 10.1089/crispr.2020.0069.

Abstract

CRISPR-associated proteins 1 and 2 (Cas1-2) are necessary and sufficient for new spacer acquisition in some CRISPR-Cas systems (e.g., type I-E), but adaptation in other systems (e.g., type II-A) involves the crRNA-guided surveillance complex. Here we show that the type I-F Cas1-2/3 proteins are necessary and sufficient to produce low levels of spacer acquisition, but the presence of the type I-F crRNA-guided surveillance complex (Csy) improves the efficiency of adaptation and significantly increases the fidelity of protospacer adjacent motif selection. Sequences selected for integration are preferentially derived from specific regions of extrachromosomal DNA, and patterns of spacer selection are highly reproducible between independent biological replicates. This work helps define the role of the Csy complex in I-F adaptation and reveals that actively replicating mobile genetic elements have antigenic signatures that facilitate their integration during CRISPR adaptation.

摘要

CRISPR 相关蛋白 1 和 2(Cas1-2)是某些 CRISPR-Cas 系统(例如 I 型-E)中新间隔区获取所必需和充分的,但其他系统(例如 II 型-A)的适应涉及 crRNA 引导的监测复合物。在这里,我们表明 I 型-F Cas1-2/3 蛋白足以产生低水平的间隔区获取,但 I 型-F crRNA 引导的监测复合物(Csy)的存在提高了适应效率,并显著提高了原间隔相邻基序选择的保真度。用于整合的选择序列优先来自染色体外 DNA 的特定区域,并且在独立的生物学重复之间,间隔选择模式具有高度可重复性。这项工作有助于定义 Csy 复合物在 I-F 适应中的作用,并揭示出活跃复制的可移动遗传元件具有抗原特征,这有助于它们在 CRISPR 适应过程中进行整合。

相似文献

6
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.I 型 CRISPR RNA 引导的 DNA 监测的结构变异。
Mol Cell. 2017 Aug 17;67(4):622-632.e4. doi: 10.1016/j.molcel.2017.06.036. Epub 2017 Aug 3.

引用本文的文献

6
Creating memories: molecular mechanisms of CRISPR adaptation.形成记忆:CRISPR 适应的分子机制。
Trends Biochem Sci. 2022 Jun;47(6):464-476. doi: 10.1016/j.tibs.2022.02.004. Epub 2022 Feb 28.
8
Distribution and phasing of sequence motifs that facilitate CRISPR adaptation.序列基序的分布和相位促进 CRISPR 适应。
Curr Biol. 2021 Aug 23;31(16):3515-3524.e6. doi: 10.1016/j.cub.2021.05.068. Epub 2021 Jun 25.

本文引用的文献

1
Primed CRISPR DNA uptake in Pyrococcus furiosus.在 Pyrococcus furiosus 中预先激活的 CRISPR DNA 摄取。
Nucleic Acids Res. 2020 Jun 19;48(11):6120-6135. doi: 10.1093/nar/gkaa381.
2
Real-time observation of CRISPR spacer acquisition by Cas1-Cas2 integrase.Cas1-Cas2 整合酶实时观察 CRISPR 间隔区的获取
Nat Struct Mol Biol. 2020 May;27(5):489-499. doi: 10.1038/s41594-020-0415-7. Epub 2020 May 4.
4
Preferential Localization of the Bacterial Nucleoid.细菌类核的优先定位
Microorganisms. 2019 Jul 19;7(7):204. doi: 10.3390/microorganisms7070204.
10
Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.I 型 Cas1-Cas2-3 CRISPR 适应复合物捕获和整合间隔物。
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5122-E5128. doi: 10.1073/pnas.1618421114. Epub 2017 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验