Suppr超能文献

相似文献

1
Distribution and phasing of sequence motifs that facilitate CRISPR adaptation.
Curr Biol. 2021 Aug 23;31(16):3515-3524.e6. doi: 10.1016/j.cub.2021.05.068. Epub 2021 Jun 25.
3
CRISPR Immunological Memory Requires a Host Factor for Specificity.
Mol Cell. 2016 Jun 16;62(6):824-833. doi: 10.1016/j.molcel.2016.04.027. Epub 2016 May 19.
4
CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2.
Nucleic Acids Res. 2019 Aug 22;47(14):7518-7531. doi: 10.1093/nar/gkz548.
5
How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
Nature. 2017 Oct 5;550(7674):137-141. doi: 10.1038/nature24020. Epub 2017 Sep 4.
6
Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays.
Nat Struct Mol Biol. 2023 Nov;30(11):1675-1685. doi: 10.1038/s41594-023-01097-2. Epub 2023 Sep 14.
7
Structures of the CRISPR genome integration complex.
Science. 2017 Sep 15;357(6356):1113-1118. doi: 10.1126/science.aao0679. Epub 2017 Jul 20.
8
Reconstitution of CRISPR adaptation in vitro and its detection by PCR.
Methods Enzymol. 2019;616:411-433. doi: 10.1016/bs.mie.2018.10.024. Epub 2019 Jan 12.
10
DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus.
Nucleic Acids Res. 2017 Mar 17;45(5):2714-2723. doi: 10.1093/nar/gkw1309.

引用本文的文献

3
SspA is a transcriptional regulator of CRISPR adaptation in E. coli.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkae1244.
4
Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays.
Nat Struct Mol Biol. 2023 Nov;30(11):1675-1685. doi: 10.1038/s41594-023-01097-2. Epub 2023 Sep 14.
5
Histones direct site-specific CRISPR spacer acquisition in model archaeon.
Nat Microbiol. 2023 Sep;8(9):1682-1694. doi: 10.1038/s41564-023-01446-3. Epub 2023 Aug 7.
6
Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems.
Nucleic Acids Res. 2023 Aug 25;51(15):8150-8168. doi: 10.1093/nar/gkad495.
7
Widespread CRISPR repeat-like RNA regulatory elements in CRISPR-Cas systems.
bioRxiv. 2023 Mar 3:2023.03.03.530964. doi: 10.1101/2023.03.03.530964.
8
Novel molecular requirements for CRISPR RNA-guided transposition.
Nucleic Acids Res. 2023 May 22;51(9):4519-4535. doi: 10.1093/nar/gkad270.
9
CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms.
Front Microbiol. 2022 Oct 28;13:1011399. doi: 10.3389/fmicb.2022.1011399. eCollection 2022.
10
PAM binding ensures orientational integration during Cas4-Cas1-Cas2-mediated CRISPR adaptation.
Mol Cell. 2022 Nov 17;82(22):4353-4367.e6. doi: 10.1016/j.molcel.2022.09.030. Epub 2022 Oct 21.

本文引用的文献

1
Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons.
Cell. 2020 Dec 23;183(7):1757-1771.e18. doi: 10.1016/j.cell.2020.11.005. Epub 2020 Dec 2.
2
Reproducible Antigen Recognition by the Type I-F CRISPR-Cas System.
CRISPR J. 2020 Oct;3(5):378-387. doi: 10.1089/crispr.2020.0069.
3
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
4
Using ggtree to Visualize Data on Tree-Like Structures.
Curr Protoc Bioinformatics. 2020 Mar;69(1):e96. doi: 10.1002/cpbi.96.
5
Selective loading and processing of prespacers for precise CRISPR adaptation.
Nature. 2020 Mar;579(7797):141-145. doi: 10.1038/s41586-020-2018-1. Epub 2020 Feb 19.
6
Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
Nature. 2020 Jan;577(7789):271-274. doi: 10.1038/s41586-019-1849-0. Epub 2019 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验