Suppr超能文献

肠道微生物组检测自闭症谱系障碍的潜力。

Potential of gut microbiome for detection of autism spectrum disorder.

机构信息

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.

出版信息

Microb Pathog. 2020 Dec;149:104568. doi: 10.1016/j.micpath.2020.104568. Epub 2020 Oct 20.

Abstract

Autism spectrum disorder (ASD) is a neuro developmental disorder characterized by a series of abnormal social behaviors. The increasing prevalence of ASD has led to the discovery of a correlation with the intestinal microbiome in many studies. In our research, we evaluated 297 subjects, including 169 individuals with ASD and 128 neurotypical subjects, from the Sequence Read Archive database. We conducted a series of analyses, including alpha-diversity, phylogenetic profiles, and functional profiles, to explore the correlation between the gut microbiome and ASD. The principal component analysis (PCA) indicated that ASD and neurotypical subjects could be divided based on the unweighted UniFrac distance. The genera Prevotella, Roseburia, Ruminococcus, Megasphaera, and Catenibacterium might be biomarkers of ASD after linear discriminant analysis effect size (LEfSe) evaluation and Random Forest analysis, respectively. The functional analysis found six significant pathways between ASD and neurotypical subjects, including oxidative phosphorylation, nucleotide excision repair, peptidoglycan biosynthesis, photosynthesis, photosynthesis proteins, and two-component system. Based on these alterations of the intestinal microbiome in ASD subjects, we developed four machine learning models: random forest (RF), Multilayer Perceptron (MLP), kernelized support vector machines with the RBF kernel (SVMs), and Decision trees (DT). Notably, the RF model after RF selection was superior, with an F1 score of 0.74 and area under the curve of 0.827(0.004), suggesting the reliability and generalizability of predictive model. Besides, the validation performance of RF model after RF selection could be 0.75(0.01) on external cohort collected by our laboratory. Our study advances the understanding of human gut microbiome in ASD that designing and evaluating microbially based interventions of ASD.

摘要

自闭症谱系障碍(ASD)是一种神经发育障碍,其特征是一系列异常的社会行为。越来越多的 ASD 发病率促使许多研究发现其与肠道微生物组之间存在相关性。在我们的研究中,我们从 Sequence Read Archive 数据库中评估了 297 个样本,包括 169 个 ASD 个体和 128 个神经典型个体。我们进行了一系列分析,包括α多样性、系统发育谱和功能谱,以探索肠道微生物组与 ASD 之间的相关性。主成分分析(PCA)表明,基于未加权 UniFrac 距离,ASD 和神经典型个体可以进行分类。经线性判别分析效应量(LEfSe)评估和随机森林分析后,普雷沃氏菌属、罗氏菌属、瘤胃球菌属、巨球形菌属和拟杆菌属可能成为 ASD 的生物标志物。功能分析发现,ASD 和神经典型个体之间有六个显著的通路,包括氧化磷酸化、核苷酸切除修复、肽聚糖生物合成、光合作用、光合作用蛋白和双组分系统。基于 ASD 受试者肠道微生物组的这些变化,我们开发了四个机器学习模型:随机森林(RF)、多层感知机(MLP)、具有 RBF 核的核支持向量机(SVMs)和决策树(DT)。值得注意的是,经 RF 选择后的 RF 模型表现出色,F1 评分为 0.74,曲线下面积为 0.827(0.004),表明预测模型具有可靠性和泛化性。此外,经 RF 选择后的 RF 模型在我们实验室收集的外部队列中的验证性能为 0.75(0.01)。我们的研究增进了对 ASD 人类肠道微生物组的理解,为 ASD 的微生物干预设计和评估提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验