Suppr超能文献

LUMINOUS数据库:从超声图像中进行腰多裂肌分割

LUMINOUS database: lumbar multifidus muscle segmentation from ultrasound images.

作者信息

Belasso Clyde J, Behboodi Bahareh, Benali Habib, Boily Mathieu, Rivaz Hassan, Fortin Maryse

机构信息

Department of Electrical and Computer Engineering, Concordia University, Montreal, H3G 1M8, Canada.

PERFORM Centre, Concordia University, Montreal, H4B 1R6, Canada.

出版信息

BMC Musculoskelet Disord. 2020 Oct 23;21(1):703. doi: 10.1186/s12891-020-03679-3.

Abstract

BACKGROUND

Among the paraspinal muscles, the structure and function of the lumbar multifidus (LM) has become of great interest to researchers and clinicians involved in lower back pain and muscle rehabilitation. Ultrasound (US) imaging of the LM muscle is a useful clinical tool which can be used in the assessment of muscle morphology and function. US is widely used due to its portability, cost-effectiveness, and ease-of-use. In order to assess muscle function, quantitative information of the LM must be extracted from the US image by means of manual segmentation. However, manual segmentation requires a higher level of training and experience and is characterized by a level of difficulty and subjectivity associated with image interpretation. Thus, the development of automated segmentation methods is warranted and would strongly benefit clinicians and researchers. The aim of this study is to provide a database which will contribute to the development of automated segmentation algorithms of the LM.

CONSTRUCTION AND CONTENT

This database provides the US ground truth of the left and right LM muscles at the L5 level (in prone and standing positions) of 109 young athletic adults involved in Concordia University's varsity teams. The LUMINOUS database contains the US images with their corresponding manually segmented binary masks, serving as the ground truth. The purpose of the database is to enable development and validation of deep learning algorithms used for automatic segmentation tasks related to the assessment of the LM cross-sectional area (CSA) and echo intensity (EI). The LUMINOUS database is publicly available at http://data.sonography.ai .

CONCLUSION

The development of automated segmentation algorithms based on this database will promote the standardization of LM measurements and facilitate comparison among studies. Moreover, it can accelerate the clinical implementation of quantitative muscle assessment in clinical and research settings.

摘要

背景

在椎旁肌中,腰多裂肌(LM)的结构和功能已引起研究下背痛和肌肉康复的研究人员和临床医生的极大兴趣。腰多裂肌的超声(US)成像 是一种有用的临床工具,可用于评估肌肉形态和功能。由于其便携性、成本效益和易用性,超声被广泛使用。为了评估肌肉功能,必须通过手动分割从超声图像中提取腰多裂肌的定量信息。然而,手动分割需要更高水平的培训和经验,并且具有与图像解释相关的难度和主观性。因此,开发自动分割方法是必要的,这将使临床医生和研究人员受益匪浅。本研究的目的是提供一个数据库,以促进腰多裂肌自动分割算法的开发。

构建与内容

该数据库提供了109名参加康考迪亚大学大学运动队的年轻运动员在L5水平(俯卧位和站立位)左右腰多裂肌的超声真实数据。LUMINOUS数据库包含超声图像及其相应的手动分割二值掩码,作为真实数据。该数据库的目的是支持用于自动分割任务的深度学习算法的开发和验证,这些任务与评估腰多裂肌横截面积(CSA)和回声强度(EI)有关。LUMINOUS数据库可在http://data.sonography.ai上公开获取。

结论

基于该数据库开发自动分割算法将促进腰多裂肌测量的标准化,并便于研究之间的比较。此外,它可以加速临床和研究环境中定量肌肉评估的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28f9/7585198/2fab47275299/12891_2020_3679_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验