Suppr超能文献

基于深度学习的不同踝关节位置下胫神经超声图像的自动识别。

Automatic Identification of Ultrasound Images of the Tibial Nerve in Different Ankle Positions Using Deep Learning.

机构信息

Inclusive Medical Science Research Institute, Morinomiya University of Medical Sciences, Osaka 559-8611, Japan.

Department of Rehabilitation, Kano General Hospital, Osaka 531-0041, Japan.

出版信息

Sensors (Basel). 2023 May 18;23(10):4855. doi: 10.3390/s23104855.

Abstract

Peripheral nerve tension is known to be related to the pathophysiology of neuropathy; however, assessing this tension is difficult in a clinical setting. In this study, we aimed to develop a deep learning algorithm for the automatic assessment of tibial nerve tension using B-mode ultrasound imaging. To develop the algorithm, we used 204 ultrasound images of the tibial nerve in three positions: the maximum dorsiflexion position and -10° and -20° plantar flexion from maximum dorsiflexion. The images were taken of 68 healthy volunteers who did not have any abnormalities in the lower limbs at the time of testing. The tibial nerve was manually segmented in all images, and 163 cases were automatically extracted as the training dataset using U-Net. Additionally, convolutional neural network (CNN)-based classification was performed to determine each ankle position. The automatic classification was validated using five-fold cross-validation from the testing data composed of 41 data points. The highest mean accuracy (0.92) was achieved using manual segmentation. The mean accuracy of the full auto-classification of the tibial nerve at each ankle position was more than 0.77 using five-fold cross-validation. Thus, the tension of the tibial nerve can be accurately assessed with different dorsiflexion angles using an ultrasound imaging analysis with U-Net and a CNN.

摘要

周围神经张力与神经病学的病理生理学有关;然而,在临床环境中评估这种张力是困难的。在这项研究中,我们旨在开发一种使用 B 型超声成像自动评估胫神经张力的深度学习算法。为了开发该算法,我们使用了三个位置(最大背屈位置和最大背屈时的-10°和-20°跖屈位置)的 204 个胫神经超声图像。这些图像取自 68 名健康志愿者,他们在测试时下肢没有任何异常。所有图像中的胫神经均进行了手动分割,使用 U-Net 自动提取了 163 例作为训练数据集。此外,还进行了基于卷积神经网络 (CNN) 的分类,以确定每个踝关节位置。使用由 41 个数据点组成的测试数据进行五折交叉验证,对自动分类进行验证。使用手动分割可获得最高的平均准确率(0.92)。使用五折交叉验证,在每个踝关节位置对胫神经的完全自动分类的平均准确率均高于 0.77。因此,使用 U-Net 和 CNN 的超声成像分析可以准确评估不同背屈角度下的胫神经张力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验