Suppr超能文献

使用二维投影从三维磁共振成像体积中进行高效脑龄预测。

Efficient Brain Age Prediction from 3D MRI Volumes Using 2D Projections.

作者信息

Jönemo Johan, Akbar Muhammad Usman, Kämpe Robin, Hamilton J Paul, Eklund Anders

机构信息

Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden.

Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden.

出版信息

Brain Sci. 2023 Sep 15;13(9):1329. doi: 10.3390/brainsci13091329.

Abstract

Using 3D CNNs on high-resolution medical volumes is very computationally demanding, especially for large datasets like UK Biobank, which aims to scan 100,000 subjects. Here, we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of 3D volumes leads to reasonable test accuracy (mean absolute error of about 3.5 years) when predicting age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 20-50 s using a single GPU, which is two orders of magnitude faster than a small 3D CNN. This speedup is explained by the fact that 3D brain volumes contain a lot of redundant information, which can be efficiently compressed using 2D projections. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.

摘要

在高分辨率医学图像上使用三维卷积神经网络(3D CNN)对计算能力要求极高,特别是对于像英国生物银行这样旨在扫描10万名受试者的大型数据集。在此,我们证明,当从脑容量预测年龄时,在三维体积的几个二维投影(代表轴向、矢状面和冠状面切片的均值和标准差)上使用二维卷积神经网络(2D CNN)可获得合理的测试精度(平均绝对误差约为3.5岁)。使用我们的方法,在单个GPU上,对20324名受试者进行一个训练轮次需要20 - 50秒,这比小型三维卷积神经网络快两个数量级。这种加速是由于三维脑容量包含大量冗余信息,这些信息可以通过二维投影有效地压缩。这些结果对于无法使用昂贵的三维卷积神经网络GPU硬件的研究人员来说非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c2/10526282/a923a76e0032/brainsci-13-01329-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验