Jing Jin, d'Angremont Emile, Ebrahim Senan, Tabaeizadeh Mohammad, Ng Marcus, Herlopian Aline, Dauwels Justin, Brandon Westover M
Massachusetts General Hospital, Boston, MA, United States; Nanyang Technological University, Singapore, Singapore.
University Medical Center Groningen, The Netherlands.
J Neurosci Methods. 2021 Jan 1;347:108956. doi: 10.1016/j.jneumeth.2020.108956. Epub 2020 Oct 21.
Manual annotation of seizures and interictal-ictal-injury continuum (IIIC) patterns in continuous EEG (cEEG) recorded from critically ill patients is a time-intensive process for clinicians and researchers. In this study, we evaluated the accuracy and efficiency of an automated clustering method to accelerate expert annotation of cEEG.
We learned a local dictionary from 97 ICU patients by applying k-medoids clustering to 592 features in the time and frequency domains. We utilized changepoint detection (CPD) to segment the cEEG recordings. We then computed a bag-of-words (BoW) representation for each segment. We further clustered the segments by affinity propagation. EEG experts scored the resulting clusters for each patient by labeling only the cluster medoids. We trained a random forest classifier to assess validity of the clusters.
Mean pairwise agreement of 62.6% using this automated method was not significantly different from interrater agreements using manual labeling (63.8%), demonstrating the validity of the method. We also found that it takes experts using our method 5.31 ± 4.44 min to label the 30.19 ± 3.84 h of cEEG data, more than 45 times faster than unaided manual review, demonstrating efficiency.
Previous studies of EEG data labeling have generally yielded similar human expert interrater agreements, and lower agreements with automated methods.
Our results suggest that long EEG recordings can be rapidly annotated by experts many times faster than unaided manual review through the use of an advanced clustering method.
对重症患者连续脑电图(cEEG)中的癫痫发作和发作间期 - 发作期 - 损伤连续体(IIIC)模式进行人工标注,对于临床医生和研究人员来说是一个耗时的过程。在本研究中,我们评估了一种自动聚类方法在加速cEEG专家标注方面的准确性和效率。
我们通过对97名重症监护病房(ICU)患者的时域和频域中的592个特征应用k - 中心点聚类来学习局部字典。我们利用变点检测(CPD)对cEEG记录进行分割。然后我们为每个片段计算词袋(BoW)表示。我们进一步通过亲和传播对片段进行聚类。脑电图专家仅通过标记聚类中心点对每个患者的聚类结果进行评分。我们训练了一个随机森林分类器来评估聚类的有效性。
使用这种自动方法的平均两两一致性为62.6%,与使用人工标注的评分者间一致性(63.8%)无显著差异,证明了该方法的有效性。我们还发现,使用我们的方法,专家标注30.19±3.84小时的cEEG数据需要5.31±4.44分钟,比无辅助的人工检查快45倍以上,证明了其效率。
先前关于脑电图数据标注的研究通常产生类似的人类专家评分者间一致性,且与自动方法的一致性较低。
我们的结果表明,通过使用先进的聚类方法,专家可以比无辅助的人工检查快很多倍地快速标注长时间的脑电图记录。