Suppr超能文献

深度主动学习在发作间期-发作期损伤连续 EEG 模式中的应用。

Deep active learning for Interictal Ictal Injury Continuum EEG patterns.

机构信息

Massachusetts General Hospital, Department of Neurology, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.

Georgia Institute of Technology, College of Computing, Atlanta, GA, Georgia.

出版信息

J Neurosci Methods. 2021 Mar 1;351:108966. doi: 10.1016/j.jneumeth.2020.108966. Epub 2020 Oct 22.

Abstract

OBJECTIVES

Seizures and seizure-like electroencephalography (EEG) patterns, collectively referred to as "ictal interictal injury continuum" (IIIC) patterns, are commonly encountered in critically ill patients. Automated detection is important for patient care and to enable research. However, training accurate detectors requires a large labeled dataset. Active Learning (AL) may help select informative examples to label, but the optimal AL approach remains unclear.

METHODS

We assembled >200,000 h of EEG from 1,454 hospitalized patients. From these, we collected 9,808 labeled and 120,000 unlabeled 10-second EEG segments. Labels included 6 IIIC patterns. In each AL iteration, a Dense-Net Convolutional Neural Network (CNN) learned vector representations for EEG segments using available labels, which were used to create a 2D embedding map. Nearest-neighbor label spreading within the embedding map was used to create additional pseudo-labeled data. A second Dense-Net was trained using real- and pseudo-labels. We evaluated several strategies for selecting candidate points for experts to label next. Finally, we compared two methods for class balancing within queries: standard balanced-based querying (SBBQ), and high confidence spread-based balanced querying (HCSBBQ).

RESULTS

Our results show: 1) Label spreading increased convergence speed for AL. 2) All query criteria produced similar results to random sampling. 3) HCSBBQ query balancing performed best. Using label spreading and HCSBBQ query balancing, we were able to train models approaching expert-level performance across all pattern categories after obtaining ∼7000 expert labels.

CONCLUSION

Our results provide guidance regarding the use of AL to efficiently label large EEG datasets in critically ill patients.

摘要

目的

发作和类似发作的脑电图(EEG)模式,统称为“发作间损伤连续体(IIIC)”模式,在危重病患者中很常见。自动检测对于患者护理和研究都是很重要的。然而,训练准确的检测器需要一个大型的标记数据集。主动学习(AL)可以帮助选择有信息的示例进行标记,但最佳的 AL 方法仍不清楚。

方法

我们收集了 1454 名住院患者的>200,000 小时的 EEG。从这些 EEG 中,我们收集了 9808 个有标签和 120,000 个无标签的 10 秒 EEG 片段。标签包括 6 种 IIIC 模式。在每个 AL 迭代中,一个密集网络卷积神经网络(CNN)使用可用的标签学习 EEG 片段的向量表示,这些表示被用于创建一个 2D 嵌入图。在嵌入图中使用最近邻标签传播来创建额外的伪标签数据。使用真实和伪标签训练第二个密集网络。我们评估了几种选择专家下一个标记候选点的策略。最后,我们比较了两种在查询中进行类别平衡的方法:标准平衡查询(SBBQ)和高置信度传播平衡查询(HCSBBQ)。

结果

我们的结果表明:1)标签传播增加了 AL 的收敛速度。2)所有查询标准都产生了与随机抽样相似的结果。3)HCSBBQ 查询平衡表现最佳。使用标签传播和 HCSBBQ 查询平衡,在获得约 7000 个专家标签后,我们能够训练出接近专家水平性能的模型,适用于所有模式类别。

结论

我们的结果为在危重病患者中有效地对大型 EEG 数据集进行标记提供了指导。

相似文献

1
Deep active learning for Interictal Ictal Injury Continuum EEG patterns.
J Neurosci Methods. 2021 Mar 1;351:108966. doi: 10.1016/j.jneumeth.2020.108966. Epub 2020 Oct 22.
3
Rapid annotation of seizures and interictal-ictal-injury continuum EEG patterns.
J Neurosci Methods. 2021 Jan 1;347:108956. doi: 10.1016/j.jneumeth.2020.108956. Epub 2020 Oct 21.
4
Automatic seizure detection using three-dimensional CNN based on multi-channel EEG.
BMC Med Inform Decis Mak. 2018 Dec 7;18(Suppl 5):111. doi: 10.1186/s12911-018-0693-8.
5
Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation.
Neurology. 2023 Apr 25;100(17):e1750-e1762. doi: 10.1212/WNL.0000000000207127. Epub 2023 Mar 6.
6
The EEG Ictal-Interictal Continuum-A Metabolic Roar But a Whimper of a Functional Outcome.
Epilepsy Curr. 2019 Jul-Aug;19(4):234-236. doi: 10.1177/1535759719855968. Epub 2019 Jun 14.
7
Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images.
Neuroimage Clin. 2019;22:101684. doi: 10.1016/j.nicl.2019.101684. Epub 2019 Jan 22.
8
Deep-learning-based seizure detection and prediction from electroencephalography signals.
Int J Numer Method Biomed Eng. 2022 Jun;38(6):e3573. doi: 10.1002/cnm.3573. Epub 2022 May 13.
9
Convolutional neural network with autoencoder-assisted multiclass labelling for seizure detection based on scalp electroencephalography.
Comput Biol Med. 2020 Oct;125:104016. doi: 10.1016/j.compbiomed.2020.104016. Epub 2020 Sep 26.
10
Interrater Reliability of Expert Electroencephalographers Identifying Seizures and Rhythmic and Periodic Patterns in EEGs.
Neurology. 2023 Apr 25;100(17):e1737-e1749. doi: 10.1212/WNL.0000000000201670. Epub 2022 Dec 2.

引用本文的文献

1
Using artificial intelligence to optimize anti-seizure treatment and EEG-guided decisions in severe brain injury.
Neurotherapeutics. 2025 Jan;22(1):e00524. doi: 10.1016/j.neurot.2025.e00524. Epub 2025 Jan 23.
3
How many patients do you need? Investigating trial designs for anti-seizure treatment in acute brain injury patients.
Ann Clin Transl Neurol. 2024 Jul;11(7):1681-1690. doi: 10.1002/acn3.52059. Epub 2024 Jun 12.
4
An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images.
Insights Imaging. 2023 Aug 25;14(1):141. doi: 10.1186/s13244-023-01487-6.
5
Quantitative epileptiform burden and electroencephalography background features predict post-traumatic epilepsy.
J Neurol Neurosurg Psychiatry. 2023 Mar;94(3):245-249. doi: 10.1136/jnnp-2022-329542. Epub 2022 Oct 14.
6
Precision Care in Cardiac Arrest: ICECAP (PRECICECAP) Study Protocol and Informatics Approach.
Neurocrit Care. 2022 Aug;37(Suppl 2):237-247. doi: 10.1007/s12028-022-01464-9. Epub 2022 Mar 1.
7
Automated Annotation of Epileptiform Burden and Its Association with Outcomes.
Ann Neurol. 2021 Aug;90(2):300-311. doi: 10.1002/ana.26161. Epub 2021 Jul 20.

本文引用的文献

1
Electrographic seizures and ictal-interictal continuum (IIC) patterns in critically ill patients.
Epilepsy Behav. 2020 May;106:107037. doi: 10.1016/j.yebeh.2020.107037. Epub 2020 Mar 26.
2
Rapid Annotation of Seizures and Interictal-ictal Continuum EEG Patterns.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3394-3397. doi: 10.1109/EMBC.2018.8513059.
3
On-line EEG Denoising and Cleaning Using Correlated Sparse Recovery and Active Learning.
Int J Wirel Inf Netw. 2017 Jun;24(2):109-123. doi: 10.1007/s10776-017-0346-3. Epub 2017 Mar 21.
5
The Ictal-Interictal Continuum: To Treat or Not to Treat (and How)?
Neurocrit Care. 2018 Aug;29(1):3-8. doi: 10.1007/s12028-017-0477-5.
6
SEMI-AUTOMATED ANNOTATION OF SIGNAL EVENTS IN CLINICAL EEG DATA.
IEEE Signal Process Med Biol Symp. 2016 Dec;2016. doi: 10.1109/SPMB.2016.7846855. Epub 2017 Feb 9.
7
Electrographic Features of Lateralized Periodic Discharges Stratify Risk in the Interictal-Ictal Continuum.
J Clin Neurophysiol. 2017 Jul;34(4):365-369. doi: 10.1097/WNP.0000000000000370.
8
Understanding and Managing the Ictal-Interictal Continuum in Neurocritical Care.
Curr Treat Options Neurol. 2016 Feb;18(2):8. doi: 10.1007/s11940-015-0391-0.
9
Rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' in critically ill neurological patients.
Clin Neurophysiol. 2016 Feb;127(2):1176-1181. doi: 10.1016/j.clinph.2015.09.135. Epub 2015 Nov 23.
10
Salzburg Consensus Criteria for Non-Convulsive Status Epilepticus--approach to clinical application.
Epilepsy Behav. 2015 Aug;49:158-63. doi: 10.1016/j.yebeh.2015.05.007. Epub 2015 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验