Suppr超能文献

使用可解释的机器学习提高临床医生在发作期-发作间期损伤连续体上对脑电图模式进行分类的能力。

Improving Clinician Performance in Classifying EEG Patterns on the Ictal-Interictal Injury Continuum Using Interpretable Machine Learning.

作者信息

Barnett Alina Jade, Guo Zhicheng, Jing Jin, Ge Wendong, Kaplan Peter W, Kong Wan Yee, Karakis Ioannis, Herlopian Aline, Jayagopal Lakshman Arcot, Taraschenko Olga, Selioutski Olga, Osman Gamaleldin, Goldenholz Daniel, Rudin Cynthia, Westover M Brandon

机构信息

Computer Science, Duke University, Durham, NC.

Pratt School of Engineering, Duke University, Durham, NC.

出版信息

NEJM AI. 2024 Jun;1(6). doi: 10.1056/aioa2300331. Epub 2024 May 23.

Abstract

BACKGROUND

In intensive care units (ICUs), critically ill patients are monitored with electroencephalography (EEG) to prevent serious brain injury. EEG monitoring is constrained by clinician availability, and EEG interpretation can be subjective and prone to interobserver variability. Automated deep-learning systems for EEG could reduce human bias and accelerate the diagnostic process. However, existing uninterpretable (black-box) deep-learning models are untrustworthy, difficult to troubleshoot, and lack accountability in real-world applications, leading to a lack of both trust and adoption by clinicians.

METHODS

We developed an interpretable deep-learning system that accurately classifies six patterns of potentially harmful EEG activity - seizure, lateralized periodic discharges (LPDs), generalized periodic discharges (GPDs), lateralized rhythmic delta activity (LRDA), generalized rhythmic delta activity (GRDA), and other patterns - while providing faithful case-based explanations of its predictions. The model was trained on 50,697 total 50-second continuous EEG samples collected from 2711 patients in the ICU between July 2006 and March 2020 at Massachusetts General Hospital. EEG samples were labeled as one of the six EEG patterns by 124 domain experts and trained annotators. To evaluate the model, we asked eight medical professionals with relevant backgrounds to classify 100 EEG samples into the six pattern categories - once with and once without artificial intelligence (AI) assistance - and we assessed the assistive power of this interpretable system by comparing the diagnostic accuracy of the two methods. The model's discriminatory performance was evaluated with area under the receiver-operating characteristic curve (AUROC) and area under the precision-recall curve. The model's interpretability was measured with task-specific neighborhood agreement statistics that interrogated the similarities of samples and features. In a separate analysis, the latent space of the neural network was visualized by using dimension reduction techniques to examine whether the ictal-interictal injury continuum hypothesis, which asserts that seizures and seizure-like patterns of brain activity lie along a spectrum, is supported by data.

RESULTS

The performance of all users significantly improved when provided with AI assistance. Mean user diagnostic accuracy improved from 47 to 71% (P<0.04). The model achieved AUROCs of 0.87, 0.93, 0.96, 0.92, 0.93, and 0.80 for the classes seizure, LPD, GPD, LRDA, GRDA, and other patterns, respectively. This performance was significantly higher than that of a corresponding uninterpretable black-box model (with P<0.0001). Videos traversing the ictal-interictal injury manifold from dimension reduction (a two-dimensional representation of the original high-dimensional feature space) give insight into the layout of EEG patterns within the network's latent space and illuminate relationships between EEG patterns that were previously hypothesized but had not yet been shown explicitly. These results indicate that the ictal-interictal injury continuum hypothesis is supported by data.

CONCLUSIONS

Users showed significant pattern classification accuracy improvement with the assistance of this interpretable deep-learning model. The interpretable design facilitates effective human-AI collaboration; this system may improve diagnosis and patient care in clinical settings. The model may also provide a better understanding of how EEG patterns relate to each other along the ictal-interictal injury continuum. (Funded by the National Science Foundation, National Institutes of Health, and others.).

摘要

背景

在重症监护病房(ICU)中,对危重症患者进行脑电图(EEG)监测以预防严重脑损伤。EEG监测受临床医生可用性的限制,并且EEG解读可能具有主观性且容易出现观察者间差异。用于EEG的自动化深度学习系统可以减少人为偏差并加快诊断过程。然而,现有的不可解释(黑箱)深度学习模型不可信,难以故障排除,并且在实际应用中缺乏问责制,导致临床医生缺乏信任且未采用。

方法

我们开发了一种可解释的深度学习系统,该系统能够准确地对六种潜在有害的EEG活动模式进行分类——癫痫发作、侧化周期性放电(LPD)、全身性周期性放电(GPD)、侧化节律性δ活动(LRDA)、全身性节律性δ活动(GRDA)以及其他模式——同时对其预测提供基于病例的可靠解释。该模型在2006年7月至2020年3月期间于马萨诸塞州综合医院从2711名ICU患者收集的总共50,697个50秒连续EEG样本上进行训练。EEG样本由124名领域专家和经过培训的注释者标记为六种EEG模式之一。为了评估该模型,我们让八位具有相关背景的医学专业人员将一百个EEG样本分类为六种模式类别——一次在有人工智能(AI)辅助的情况下,一次在没有AI辅助的情况下——并且我们通过比较两种方法的诊断准确性来评估这个可解释系统 的辅助能力。该模型的判别性能通过受试者工作特征曲线下面积(AUROC)和精确召回率曲线下面积进行评估。该模型的可解释性通过询问样本和特征相似性的特定任务邻域一致性统计量来衡量。在一项单独的分析中,通过使用降维技术对神经网络的潜在空间进行可视化,以检查发作 - 发作间期损伤连续体假说(该假说断言癫痫发作和类似癫痫发作的脑活动模式位于一个连续谱上)是否得到数据支持。

结果

在有AI辅助的情况下,所有用户的表现都有显著提高。用户的平均诊断准确性从47%提高到71%(P<0.04)。该模型对癫痫发作、LPD、GPD、LRDA、GRDA和其他模式类别的AUROC分别为0.87、0.93、0.96、0.92、0.93和0.80。这一性能显著高于相应的不可解释黑箱模型(P<0.00 < 0.0001)。从降维(原始高维特征空间的二维表示)中穿越发作 - 发作间期损伤流形的视频深入了解了网络潜在空间内EEG模式的布局,并阐明了先前假设但尚未明确显示的EEG模式之间的关系。这些结果表明发作 - 发作间期损伤连续体假说得到了数据支持。

结论

在这个可解释的深度学习模型的辅助下,用户的模式分类准确性有显著提高。可解释的设计促进了有效的人机协作;该系统可能会改善临床环境中的诊断和患者护理。该模型还可能更好地理解EEG模式在发作 - 发作间期损伤连续体上如何相互关联。(由美国国家科学基金会、美国国立卫生研究院等资助。)

相似文献

2
Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation.
Neurology. 2023 Apr 25;100(17):e1750-e1762. doi: 10.1212/WNL.0000000000207127. Epub 2023 Mar 6.
3
The EEG Ictal-Interictal Continuum-A Metabolic Roar But a Whimper of a Functional Outcome.
Epilepsy Curr. 2019 Jul-Aug;19(4):234-236. doi: 10.1177/1535759719855968. Epub 2019 Jun 14.
4
Interrater Reliability of Expert Electroencephalographers Identifying Seizures and Rhythmic and Periodic Patterns in EEGs.
Neurology. 2023 Apr 25;100(17):e1737-e1749. doi: 10.1212/WNL.0000000000201670. Epub 2022 Dec 2.
5
Understanding and Managing the Ictal-Interictal Continuum in Neurocritical Care.
Curr Treat Options Neurol. 2016 Feb;18(2):8. doi: 10.1007/s11940-015-0391-0.
6
Lateralized Rhythmic Delta Activity and Lateralized Periodic Discharges in Critically Ill Pediatric Patients.
J Clin Neurophysiol. 2025 Jan 1;42(1):44-50. doi: 10.1097/WNP.0000000000001064. Epub 2024 Jan 9.
7
Periodic and rhythmic patterns in critically ill children: Incidence, interrater agreement, and seizures.
Epilepsia. 2021 Dec;62(12):2955-2967. doi: 10.1111/epi.17068. Epub 2021 Oct 12.
9
Lateralized Periodic Discharges: Which patterns are interictal, ictal, or peri-ictal?
Clin Neurophysiol. 2021 Jul;132(7):1593-1603. doi: 10.1016/j.clinph.2021.04.003. Epub 2021 Apr 27.

引用本文的文献

3
The future of EEG education in the era of artificial intelligence.
Epilepsia. 2025 Jun;66(6):1838-1842. doi: 10.1111/epi.18326. Epub 2025 Mar 4.
4
Using artificial intelligence to optimize anti-seizure treatment and EEG-guided decisions in severe brain injury.
Neurotherapeutics. 2025 Jan;22(1):e00524. doi: 10.1016/j.neurot.2025.e00524. Epub 2025 Jan 23.
5
Detection of neurologic changes in critically ill infants using deep learning on video data: a retrospective single center cohort study.
EClinicalMedicine. 2024 Nov 11;78:102919. doi: 10.1016/j.eclinm.2024.102919. eCollection 2024 Dec.
6
Automated quantification of periodic discharges in human electroencephalogram.
Biomed Phys Eng Express. 2024 Sep 20;10(6). doi: 10.1088/2057-1976/ad6c53.

本文引用的文献

1
Effects of epileptiform activity on discharge outcome in critically ill patients in the USA: a retrospective cross-sectional study.
Lancet Digit Health. 2023 Aug;5(8):e495-e502. doi: 10.1016/S2589-7500(23)00088-2. Epub 2023 Jun 7.
2
Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation.
Neurology. 2023 Apr 25;100(17):e1750-e1762. doi: 10.1212/WNL.0000000000207127. Epub 2023 Mar 6.
3
Epileptic seizure detection by using interpretable machine learning models.
J Neural Eng. 2023 Feb 21;20(1). doi: 10.1088/1741-2552/acb089.
5
Interrater Reliability of Expert Electroencephalographers Identifying Seizures and Rhythmic and Periodic Patterns in EEGs.
Neurology. 2023 Apr 25;100(17):e1737-e1749. doi: 10.1212/WNL.0000000000201670. Epub 2022 Dec 2.
6
A deep learning framework for epileptic seizure detection based on neonatal EEG signals.
Sci Rep. 2022 Jul 29;12(1):13010. doi: 10.1038/s41598-022-15830-2.
7
EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review.
Comput Intell Neurosci. 2022 Jun 17;2022:6486570. doi: 10.1155/2022/6486570. eCollection 2022.
8
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
10
Automated Annotation of Epileptiform Burden and Its Association with Outcomes.
Ann Neurol. 2021 Aug;90(2):300-311. doi: 10.1002/ana.26161. Epub 2021 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验